Function of initiation factor 1 in the binding and release of initiation factor 2 from ribosomal initiation complexes in Escherichia coli. 1977

E A Stringer, and P Sarkar, and U Maitra

1. Studies on the function of initiation factor 1 (IF-1) in the formation of 30 S initiation complexes have been carried out. IF-1 appears to prevent the dissociation of initiation factor 2 (IF-2) from the 30 S initiation complex. The factor has no effect on either the initial binding of IF-2 nor does it increase the amount of IF-2 dependent fMet-tRNA and GTP bound to the 30 S subunit. Bound fMet-tRNA remains stable to sucrose gradient centrifugation even in the absence of IF-1. 2. It is postulated that the presence of IF-2 on the 30 S complex is necessary so that at the time of junction with the 50 S subunit to form a 70 S complex, the 70 S-dependent GTPase activity of IF-2 can hydrolyze GTP. This hydrolysis provides a means by which GTP can be removed to facilitate formation of a 70 S initiation complex active in peptidyl transfer. In support of this postulate, it was observed that 30 S initiation complexes formed in the absence of IF-1 could be depleted of their complexes were still able to accept 50 S subunits to form 70 S complexes which could still donate fMet-tRNA into peptide linkages. These results indicate that 30 S complexes lacking GTP do not require IF-2 for formation of active 70 S complexes. 3. IF-1, which is required to prevent dissociation of IF-2 from the 30 S initiation complex, is also required for release of IF-2 from ribosomes following 70 S initiation complex formation. The mechanisms of the release of IF-2 has been studied in greater detail. Evidence is presented which rules out the presence of a stable IF-2 GDP complex on the surface of the 70 S ribosome following GTP hydrolysis and of any exchange reactions between IF-1 and guanine nucleotides necessary for effecting the release of IF-2. IF-2 remains on the 70 S initiation complexes after release of guanine nucleotides and can be liberated solely by addition of IF-1.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

E A Stringer, and P Sarkar, and U Maitra
March 1976, Proceedings of the National Academy of Sciences of the United States of America,
E A Stringer, and P Sarkar, and U Maitra
January 1991, Biochimie,
E A Stringer, and P Sarkar, and U Maitra
December 1974, Proceedings of the National Academy of Sciences of the United States of America,
E A Stringer, and P Sarkar, and U Maitra
January 2003, Nature,
E A Stringer, and P Sarkar, and U Maitra
January 1995, Nucleic acids symposium series,
E A Stringer, and P Sarkar, and U Maitra
March 1976, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!