The impact of intracellular aminopeptidase on C2C12 myoblast proliferation and differentiation. 2020

Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Japan. Electronic address: shionosana@med.tohoku.ac.jp.

The ubiquitin-proteasome pathway is essential for skeletal muscle growth and development. Proteasomes generate oligopeptides in the cytoplasm, and these peptides are considered to be rapidly degraded to amino acids by several intracellular aminopeptidases. However, the role of intracellular aminopeptidases in muscle growth remains unknown. In this study, therefore, we investigated the role of intracellular aminopeptidases in C2C12 myoblast proliferation and differentiation. Inhibition of intracellular aminopeptidases by Bestatin methyl ester (Bes-ME) decreased leucine and alanine aminopeptidase activity, and impaired proliferation and differentiation of C2C12 myoblasts. Furthermore, we observed that the inhibition of intracellular aminopeptidases reduced intracellular levels of amino acid and ATP level, and suppressed the phosphorylation of the mTOR pathway. These results suggested that intracellular aminopeptidases affect C2C12 myoblast proliferation and differentiation via mTOR pathway; however, further studies are required to clarify the role of aminopeptidase in skeletal muscle.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000626 Aminopeptidases A subclass of EXOPEPTIDASES that act on the free N terminus end of a polypeptide liberating a single amino acid residue. EC 3.4.11. Aminopeptidase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D042541 Intracellular Space The area within CELLS. Subcellular Space,Intracellular Spaces,Space, Intracellular,Space, Subcellular,Spaces, Intracellular,Spaces, Subcellular,Subcellular Spaces
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular

Related Publications

Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
March 2024, Cell death & disease,
Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
April 2018, Molecular medicine reports,
Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
January 2021, Frontiers in genetics,
Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
May 2018, European journal of cell biology,
Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
January 2014, PloS one,
Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
March 2017, Biochemical and biophysical research communications,
Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
July 2016, Biochemistry and biophysics reports,
Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
December 2020, Journal of cellular biochemistry,
Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
July 2005, Molecular & cellular proteomics : MCP,
Shion Osana, and Kazutaka Murayama, and Ryoichi Nagatomi
January 2016, Bioscience, biotechnology, and biochemistry,
Copied contents to your clipboard!