Transglial pathway of diffusion in the Schwann sheath of the squid giant axon. 1988

M J Zwahlen, and C Sandri, and N G Greeff
Physiologisches Institut, Universität Zürich-Irchel, Switzerland.

In order to investigate the transglial pathways in the Schwann sheath of squid giant axons, an electron microscopic study of thin sections and freeze-fracture replicas was carried out. Hitherto the mesaxonal clefts between Schwann cells were regarded as the only pathway between the extracellular space and the periaxonal space which, like the clefts, is about 10 nm in width. The clefts were now found to be obstructed by a putative single-stranded tight junction between neighbouring Schwann cells along the entire border near the axon. The Schwann cells were found to be penetrated like a sponge by a three-dimensional tubular transglial lattice that is confluent with the periaxonal space, the mesaxonal clefts and the extracellular space. The transglial channel system (TGCS) would, therefore, serve as an alternative diffusional pathway, provided that the tubular lumen was permeable. The diameter of the tubules is about 40 nm. In freeze-fracture replicas the density of tubular openings towards the axon was estimated to be 3.3 +/- 0.72 per micron 2. In relation to the periaxonal cell surface, this constitutes a relative opening area of 0.42% as compared to the 0.15% of the mesaxonal clefts (neglecting their tight junctions). Therefore, the TGCS would provide a ubiquitous access for ionic flow between axolemma and extracellular space. The fact that the TGCS has only recently been observed in squid, but has been described for some time in the giant nerve fibres of crayfish and lobster, can be explained by the use of different fixation methods. The TGCS system is preserved in aldehyde fixation as used in the present study, whereas osmium tetroxide was applied in earlier work on squid. The comparison with the results obtained in other species suggests strongly that the TGCS is permeable and constitutes a transglial pathway for rapid ionic flow.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D049832 Decapodiformes A superorder of CEPHALOPODS comprised of squid, cuttlefish, and their relatives. Their distinguishing feature is the modification of their fourth pair of arms into tentacles, resulting in 10 limbs. Cuttlefish,Illex,Sepiidae,Squid,Todarodes,Cuttlefishs,Decapodiforme,Illices,Squids,Todarode

Related Publications

M J Zwahlen, and C Sandri, and N G Greeff
January 1980, Biophysical journal,
M J Zwahlen, and C Sandri, and N G Greeff
December 1958, Journal of neurochemistry,
M J Zwahlen, and C Sandri, and N G Greeff
December 1981, The Journal of experimental biology,
M J Zwahlen, and C Sandri, and N G Greeff
January 1991, Annals of the New York Academy of Sciences,
M J Zwahlen, and C Sandri, and N G Greeff
April 1974, Proceedings of the National Academy of Sciences of the United States of America,
M J Zwahlen, and C Sandri, and N G Greeff
June 1960, Journal of ultrastructure research,
M J Zwahlen, and C Sandri, and N G Greeff
February 1987, Journal of neurocytology,
M J Zwahlen, and C Sandri, and N G Greeff
February 1976, Biophysical journal,
M J Zwahlen, and C Sandri, and N G Greeff
January 2001, Neuroscience,
M J Zwahlen, and C Sandri, and N G Greeff
December 1963, The Journal of physiology,
Copied contents to your clipboard!