Transcriptome analysis of axolotl oropharyngeal explants during taste bud differentiation stages. 2020

Priya Kohli, and Lauren Marazzi, and Deborah Eastman
Department of Mathematics and Statistics, Connecticut College, 270 Mohegan Avenue, New London, CT, United States of America.

The Mexican salamander, Ambystoma mexicanum (Axolotl), is an excellent vertebrate model system to understand development and regeneration. Studies in axolotl embryos have provided important insights into taste bud development. Taste bud specification and determination occur in the oropharyngeal endoderm of axolotl embryos during gastrulation and neurulation, respectively, whereas taste bud innervation and taste cell differentiation occur later in development. Axolotl embryos are amenable to microsurgery, and tissue explants develop readily in vitro. We performed RNA-seq analysis to investigate the differential expression of genes in oropharyngeal explants at several stages of taste cell differentiation. Since the axolotl genome has only recently been sequenced, we used a Trinity pipeline to perform de novo assembly of sequencing reads. Linear models for RNA-seq data were used to identify differentially expressed genes. We found 1234 unique genes differentially expressed during taste cell differentiation stages. We validated four of these genes using RTqPCR and performed GO functional analysis. The differential expression of these genes suggests that they may play a role in taste cell differentiation in axolotls.

UI MeSH Term Description Entries
D009960 Oropharynx The middle portion of the pharynx that lies posterior to the mouth, inferior to the SOFT PALATE, and superior to the base of the tongue and EPIGLOTTIS. It has a digestive function as food passes from the mouth into the oropharynx before entering ESOPHAGUS. Oropharynxs
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D000558 Ambystoma mexicanum A salamander found in Mexican mountain lakes and accounting for about 30 percent of the urodeles used in research. The axolotl remains in larval form throughout its life, a phenomenon known as neoteny. Axolotl,Mexican Salamander,Ambystoma mexicanums,Axolotls,Salamander, Mexican,mexicanums, Ambystoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013650 Taste Buds Small sensory organs which contain gustatory receptor cells, basal cells, and supporting cells. Taste buds in humans are found in the epithelia of the tongue, palate, and pharynx. They are innervated by the CHORDA TYMPANI NERVE (a branch of the facial nerve) and the GLOSSOPHARYNGEAL NERVE. Bud, Taste,Buds, Taste,Taste Bud
D059467 Transcriptome The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells. Transcriptomes,Gene Expression Profiles,Gene Expression Signatures,Transcriptome Profiles,Expression Profile, Gene,Expression Profiles, Gene,Expression Signature, Gene,Expression Signatures, Gene,Gene Expression Profile,Gene Expression Signature,Profile, Gene Expression,Profile, Transcriptome,Profiles, Gene Expression,Profiles, Transcriptome,Signature, Gene Expression,Signatures, Gene Expression,Transcriptome Profile
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Priya Kohli, and Lauren Marazzi, and Deborah Eastman
August 2017, Scientific reports,
Priya Kohli, and Lauren Marazzi, and Deborah Eastman
August 2011, Auris, nasus, larynx,
Priya Kohli, and Lauren Marazzi, and Deborah Eastman
January 1971, Journal of dental research,
Priya Kohli, and Lauren Marazzi, and Deborah Eastman
February 1988, Planta,
Priya Kohli, and Lauren Marazzi, and Deborah Eastman
January 2023, PeerJ,
Priya Kohli, and Lauren Marazzi, and Deborah Eastman
January 2005, Chemical senses,
Priya Kohli, and Lauren Marazzi, and Deborah Eastman
November 2023, Animal biotechnology,
Priya Kohli, and Lauren Marazzi, and Deborah Eastman
October 2019, eLife,
Priya Kohli, and Lauren Marazzi, and Deborah Eastman
January 2017, PloS one,
Copied contents to your clipboard!