Identifying Cysteine, N-Acetylcysteine, and Glutathione Conjugates as Novel Metabolites of Aristolochic Acid I: Emergence of a New Detoxification Pathway. 2020

Jiayin Zhang, and Chi-Kong Chan, and Yat-Hing Ham, and Wan Chan
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

There is accumulating evidence that Balkan endemic nephropathy (BEN) is an environmental disease caused by aristolochic acids (AAs) released from the decomposition of Aristolochia clematitis L., an AA-containing weed that grows abundantly in the Balkan Peninsula. AA exposure has also been associated with carcinoma development in the upper urinary tract of some patients suffering from BEN. It is believed that an aristolactam-nitrenium ion intermediate with a delocalized positive charge produced in the hepatic metabolism of AAs binds to DNA and the resulting DNA adduct is responsible for initiating the carcinoma development process. In this study, we demonstrated for the first time that the aristolactam-nitrenium ion intermediate will also react with endogenous aminothiols, for example, cysteine, N-acetylcysteine, and glutathione in vitro, and in rats, producing phase II-conjugated metabolites in a dosage-dependent manner. It is highly possible that this conjugation process consumes and ultimately deactivates this carcinogenic intermediate and acts as an important, but previously unreported, detoxification mechanism of AAs. Results also showed AAs, phase I metabolites, and the aminothiol-conjugated metabolites are rapidly eliminated from AA-exposed rats. Furthermore, we found evidence that AA exposure induced oxidative stress in rats, as indicated by the glutathione depletion in rat serum samples.

UI MeSH Term Description Entries
D008297 Male Males
D008658 Inactivation, Metabolic Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion. Detoxication, Drug, Metabolic,Drug Detoxication, Metabolic,Metabolic Detoxication, Drug,Detoxification, Drug, Metabolic,Metabolic Detoxification, Drug,Metabolic Drug Inactivation,Detoxication, Drug Metabolic,Detoxication, Metabolic Drug,Detoxification, Drug Metabolic,Drug Inactivation, Metabolic,Drug Metabolic Detoxication,Drug Metabolic Detoxification,Inactivation, Metabolic Drug,Metabolic Drug Detoxication,Metabolic Inactivation
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D034341 Aristolochic Acids Nitro-phenanthrenes occurring in ARISTOLOCHIACEAE and other plants. They derive from stephanine (APORPHINES) by oxidative ring cleavage. The nitro group is a reactive alkylator (ALKYLATING AGENTS) that binds to biological macromolecules. Ingestion by humans is associated with nephropathy (NEPHRITIS). There is no relationship to the similar named aristolochene (SESQUITERPENES).

Related Publications

Jiayin Zhang, and Chi-Kong Chan, and Yat-Hing Ham, and Wan Chan
October 1993, Biochemical pharmacology,
Jiayin Zhang, and Chi-Kong Chan, and Yat-Hing Ham, and Wan Chan
July 1986, Biochemical pharmacology,
Jiayin Zhang, and Chi-Kong Chan, and Yat-Hing Ham, and Wan Chan
August 2007, Current opinion in pharmacology,
Jiayin Zhang, and Chi-Kong Chan, and Yat-Hing Ham, and Wan Chan
May 2013, Journal of natural products,
Jiayin Zhang, and Chi-Kong Chan, and Yat-Hing Ham, and Wan Chan
July 1975, Xenobiotica; the fate of foreign compounds in biological systems,
Jiayin Zhang, and Chi-Kong Chan, and Yat-Hing Ham, and Wan Chan
September 2010, International journal of cancer,
Jiayin Zhang, and Chi-Kong Chan, and Yat-Hing Ham, and Wan Chan
October 2012, Drug testing and analysis,
Jiayin Zhang, and Chi-Kong Chan, and Yat-Hing Ham, and Wan Chan
January 1989, European journal of clinical pharmacology,
Jiayin Zhang, and Chi-Kong Chan, and Yat-Hing Ham, and Wan Chan
August 1998, Chemical research in toxicology,
Copied contents to your clipboard!