Lipid peroxidation as a possible cause of cataract. 1988

M A Babizhayev, and A I Deyev, and L F Linberg
Moscow Helmholtz Eye Diseases Research Institute, U.S.S.R.

The role of free-radical-induced lipid oxidation in the development of human lens opacity was studied. Physico-chemical parameters of the lens fiber membranes at different stages of cataract have been investigated. The deterioration of lens fiber plasma membranes structure preceding formation of large aggregates in lenticular matter, leading to lens opacity, was observed by electron microscopy. Initial stages of cataract were characterized by the accumulation of primary (diene conjugates, cetodienes) lipid peroxidation (LPO) products, while in the later stages there was a prevalence of end LPO fluorescent products. Reliable increase in oxiproducts of fatty acyl content of lenticular lipids was shown by direct gas chromatography technique obtaining fatty acid fluorine-substituted derivatives. The lens opacity degree is found to correlate with the level of the end LPO fluorescent product accumulation in its tissue, accompanied by SH group oxidation of crystallins due to decrease of reduced glutathione concentration in the lens. The injection of LPO products into the vitreous has been shown to induce cataract. It was concluded that peroxide damage of the lens fiber membranes may be the initiatory cause of cataract development.

UI MeSH Term Description Entries
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002386 Cataract Partial or complete opacity on or in the lens or capsule of one or both eyes, impairing vision or causing blindness. The many kinds of cataract are classified by their morphology (size, shape, location) or etiology (cause and time of occurrence). (Dorland, 27th ed) Cataract, Membranous,Lens Opacities,Pseudoaphakia,Cataracts,Cataracts, Membranous,Lens Opacity,Membranous Cataract,Membranous Cataracts,Opacities, Lens,Opacity, Lens,Pseudoaphakias
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M A Babizhayev, and A I Deyev, and L F Linberg
March 1983, Biochemical and biophysical research communications,
M A Babizhayev, and A I Deyev, and L F Linberg
December 1988, Biochemical pharmacology,
M A Babizhayev, and A I Deyev, and L F Linberg
January 1980, Neurological research,
M A Babizhayev, and A I Deyev, and L F Linberg
April 1986, Biulleten' eksperimental'noi biologii i meditsiny,
M A Babizhayev, and A I Deyev, and L F Linberg
January 1984, Drug and chemical toxicology,
M A Babizhayev, and A I Deyev, and L F Linberg
August 2001, Human & experimental toxicology,
M A Babizhayev, and A I Deyev, and L F Linberg
April 2014, Biochemical and biophysical research communications,
M A Babizhayev, and A I Deyev, and L F Linberg
January 1987, International journal of tissue reactions,
M A Babizhayev, and A I Deyev, and L F Linberg
June 1995, Diabete & metabolisme,
Copied contents to your clipboard!