The ubiquitin proteasome system and schizophrenia. 2020

Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia.

The ubiquitin-proteasome system is a master regulator of neural development and the maintenance of brain structure and function. It influences neurogenesis, synaptogenesis, and neurotransmission by determining the localisation, interaction, and turnover of scaffolding, presynaptic, and postsynaptic proteins. Moreover, ubiquitin-proteasome system signalling transduces epigenetic changes in neurons independently of protein degradation and, as such, dysfunction of components and substrates of this system has been linked to a broad range of brain conditions. Although links between ubiquitin-proteasome system dysfunction and neurodegenerative disorders have been known for some time, only recently have similar links emerged for neurodevelopmental disorders, such as schizophrenia. Here, we review the components of the ubiquitin-proteasome system that are reported to be dysregulated in schizophrenia, and discuss specific molecular changes to these components that might, in part, explain the complex causes of this mental disorder.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012559 Schizophrenia A severe emotional disorder of psychotic depth characteristically marked by a retreat from reality with delusion formation, HALLUCINATIONS, emotional disharmony, and regressive behavior. Dementia Praecox,Schizophrenic Disorders,Disorder, Schizophrenic,Disorders, Schizophrenic,Schizophrenias,Schizophrenic Disorder
D017729 Presynaptic Terminals The distal terminations of axons which are specialized for the release of neurotransmitters. Also included are varicosities along the course of axons which have similar specializations and also release transmitters. Presynaptic terminals in both the central and peripheral nervous systems are included. Axon Terminals,Nerve Endings, Presynaptic,Synaptic Boutons,Synaptic Terminals,Axon Terminal,Bouton, Synaptic,Boutons, Synaptic,Ending, Presynaptic Nerve,Endings, Presynaptic Nerve,Nerve Ending, Presynaptic,Presynaptic Nerve Ending,Presynaptic Nerve Endings,Presynaptic Terminal,Synaptic Bouton,Synaptic Terminal,Terminal, Axon,Terminal, Presynaptic,Terminal, Synaptic,Terminals, Axon,Terminals, Presynaptic,Terminals, Synaptic
D044767 Ubiquitin-Protein Ligases A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes. Ubiquitin-Protein Ligase,E3 Ligase,E3 Ubiquitin Ligase,Ubiquitin Ligase E3,Ubiquitin-Protein Ligase E3,Ligase E3, Ubiquitin,Ligase E3, Ubiquitin-Protein,Ligase, E3,Ligase, E3 Ubiquitin,Ligase, Ubiquitin-Protein,Ligases, Ubiquitin-Protein,Ubiquitin Ligase, E3,Ubiquitin Protein Ligase,Ubiquitin Protein Ligase E3,Ubiquitin Protein Ligases
D046988 Proteasome Endopeptidase Complex A large multisubunit complex that plays an important role in the degradation of most of the cytosolic and nuclear proteins in eukaryotic cells. It contains a 700-kDa catalytic sub-complex and two 700-kDa regulatory sub-complexes. The complex digests ubiquitinated proteins and protein activated via ornithine decarboxylase antizyme. 20S Proteasome,Ingensin,Macropain,Macroxyproteinase,Multicatalytic Endopeptidase Complex,Multicatalytic Proteinase,Prosome,Proteasome,Complex, Multicatalytic Endopeptidase,Complex, Proteasome Endopeptidase,Endopeptidase Complex, Multicatalytic,Endopeptidase Complex, Proteasome,Proteasome, 20S,Proteinase, Multicatalytic
D055495 Neurogenesis Formation of NEURONS which involves the differentiation and division of STEM CELLS in which one or both of the daughter cells become neurons. Neurogeneses
D019636 Neurodegenerative Diseases Hereditary and sporadic conditions which are characterized by progressive nervous system dysfunction. These disorders are often associated with atrophy of the affected central or peripheral nervous system structures. Degenerative Diseases, Nervous System,Degenerative Diseases, Central Nervous System,Degenerative Diseases, Neurologic,Degenerative Diseases, Spinal Cord,Degenerative Neurologic Diseases,Degenerative Neurologic Disorders,Nervous System Degenerative Diseases,Neurodegenerative Disorders,Neurologic Degenerative Conditions,Neurologic Degenerative Diseases,Neurologic Diseases, Degenerative,Degenerative Condition, Neurologic,Degenerative Conditions, Neurologic,Degenerative Neurologic Disease,Degenerative Neurologic Disorder,Neurodegenerative Disease,Neurodegenerative Disorder,Neurologic Degenerative Condition,Neurologic Degenerative Disease,Neurologic Disease, Degenerative,Neurologic Disorder, Degenerative,Neurologic Disorders, Degenerative

Related Publications

Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
January 2014, Biochimica et biophysica acta,
Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
March 2006, Journal of biosciences,
Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
August 2000, Nature biotechnology,
Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
September 2013, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
May 1999, Journal of cell science,
Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
December 2001, Rinsho shinkeigaku = Clinical neurology,
Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
January 2005, Essays in biochemistry,
Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
January 2010, Cardiovascular research,
Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
May 2010, Experimental cell research,
Sandra Luza, and Carlos M Opazo, and Chad A Bousman, and Christos Pantelis, and Ashley I Bush, and Ian P Everall
May 2006, Journal of cell science,
Copied contents to your clipboard!