Nephrotoxicity of N-(3,5-dichlorophenyl)succinimide metabolites in vivo and in vitro. 1988

G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
Department of Pharmacology, Marshall University School of Medicine, Huntington, West Virginia 25704-2901.

The experimental fungicide N-(3,5-dichlorophenyl)succinimide (NDPS) has been shown to produce selective nephrotoxicity at least in part through the actions of one or more metabolites. The purpose of this study was to (1) determine the nephrotoxic potential of three known NDPS metabolites; N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (NDHS), N-(3,5-dichlorophenyl)-2-hydroxysuccinamic acid (NDHSA), and N-(3,5-dichlorophenyl)malonamic acid (DMA) and (2) examine the role of renal biotransformation in NDPS-induced nephrotoxicity. In one set of experiments, male Fischer 344 rats were administered a single intraperitoneal (ip) injection of NDPS or a NDPS metabolite (0.2, 0.4, or 1.0 mmol/kg) or vehicle (sesame oil, 2.5 ml/kg) and renal function was monitored at 24 and 48 hr. Both NDHS and NDHSA administration (0.2 or 0.4 mmol/kg) resulted in nephrotoxicity similar to that produced by NDPS (0.4 or 1.0 mmol/kg). DMA administration resulted in only minor renal effects. Addition of NDPS to renal cortical slices prepared from naive Fischer 344 rats resulted in decreases in p-aminohippurate (PAH) and tetraethylammonium (TEA) accumulation at NDPS media concentrations of 10(-4) and 10(-5) M or greater, respectively. Pretreatment of rats with microsomal enzyme activity modifiers (phenobarbital, 3-methylcholanthrene, cobalt chloride, or piperonyl butoxide) had little effect on in vitro effects of NDPS on PAH or TEA accumulation. A pattern of PAH or TEA uptake similar to that observed for NDPS was observed in vitro with NDPS-d4, a nonnephrotoxic analog of NDPS labeled on the succinimide ring with deuterium. Of the NDPS metabolites tested in vitro for nephrotoxicity, only NDHS produced decreases in PAH and TEA accumulation similar to those produced by NDPS. These results suggest that the NDPS metabolites NDHS and NDHSA are nephrotoxic compounds. However, the role of these metabolites in NDPS-induced nephrotoxicity remains to be determined. In addition, it appears that NDPS has direct effects on renal function, but these effects do not appear to be of major toxicological significance in vivo. Direct renal bioactivation of NDPS or its known metabolites to nephrotoxic species does not appear to occur in vitro.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D010130 p-Aminohippuric Acid The glycine amide of 4-aminobenzoic acid. Its sodium salt is used as a diagnostic aid to measure effective renal plasma flow (ERPF) and excretory capacity. 4-Aminohippuric Acid,para-Aminohippuric Acid,Aminohippurate Sodium,Aminohippuric Acid,Nephrotest,Sodium Para-Aminohippurate,p-Aminohippurate,4 Aminohippuric Acid,Para-Aminohippurate, Sodium,Sodium Para Aminohippurate,Sodium, Aminohippurate,p Aminohippurate,p Aminohippuric Acid,para Aminohippuric Acid
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D005659 Fungicides, Industrial Chemicals that kill or inhibit the growth of fungi in agricultural applications, on wood, plastics, or other materials, in swimming pools, etc. Industrial Fungicides
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013388 Succinimides A subclass of IMIDES with the general structure of pyrrolidinedione. They are prepared by the distillation of ammonium succinate. They are sweet-tasting compounds that are used as chemical intermediates and plant growth stimulants. Butanimides,Pyrrolidinediones
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
September 1990, Toxicology letters,
G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
September 1987, Toxicology letters,
G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
September 1990, Toxicology,
G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
January 1985, Toxicology letters,
G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
January 1982, Toxicology,
G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
March 1994, Toxicology,
G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
October 1986, Life sciences,
G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
September 1987, Toxicology,
G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
June 1995, Toxicology,
G O Rankin, and H C Shih, and D J Yang, and C D Richmond, and V J Teets, and P I Brown
January 1991, Toxicology,
Copied contents to your clipboard!