Sequence and analysis of bovine enteritic coronavirus (F15) genome. I. Sequence of the gene coding for the nucleocapsid protein; analysis of the predicted protein. 1988

C Crucière, and J Laporte
Station de Virologie et d'Immunologie, INRA, CRJJ, Jouy-en-Josas, France.

Sequences encoding the N protein of the bovine enteritic coronavirus-F15 strain (BECV-F15) have been cloned in PBR322 plasmid using cDNA produced by priming with oligo-dT on purified viral genomic RNA. Some 265 insert-containing clones were studied. Hybridization of these inserts with poly(A)+ RNA extracted from infected cells led to the conclusion that they were located at the 3'-end of the genome. After subcloning in M13 phage DNA, clones were sequenced by the Sanger technique. A 1,710-nucleotide sequence corresponding to the gene coding for the viral N-protein was established. It shows 2 overlapping open reading frames (ORF). The 3'-non-coding end of the gene has an 8-nucleotide sequence in common with the homologous genome areas of MHV, TGE and IBV viruses. This sequence may represent the polymerase RNA binding site. An upstream sequence surrounding the first AUG of the smaller ORF corresponds to a potentially functional initiation codon. The sequence of the primary translation product deduced from the DNA sequence predicts a polypeptide of 207 amino acids (22.9 Kd) with a high leucine (19.8%) content, possessing a hydrophobic N-terminal end. The larger ORF has a coding capacity of 448 amino acids (49.4 Kd), corresponding to the N-protein molecular weight. The deduced protein possesses 43 serine residues (9.6% of the total amino acid content) which may be phosphorylated and involved in N-protein/RNA binding. N-protein also has 5 regions with a high basic amino acid content. One of them is also serine-rich and has a strong homology site with MHV, TGE and IBV viruses. In the first part of the N-terminal, a 12-amino-acid sequence (PRWYFYYLGTGP) is highly conserved for BECV-F15, JHM, TGE and IBV viruses. BCV Mebus strain and BECV-F15 have only minor differences in their N-protein sequence.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003332 Coronaviridae Spherical RNA viruses, in the order NIDOVIRALES, infecting a wide range of animals including humans. Transmission is by fecal-oral and respiratory routes. Mechanical transmission is also common. There are two genera: CORONAVIRUS and TOROVIRUS. Bafinivirus,Coronavirinae,Torovirinae,White bream virus,Bafiniviruses,White bream viruses
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

C Crucière, and J Laporte
September 1992, Journal of virology,
C Crucière, and J Laporte
January 1990, Research in virology,
C Crucière, and J Laporte
January 1995, Advances in experimental medicine and biology,
C Crucière, and J Laporte
January 1999, Intervirology,
Copied contents to your clipboard!