Kappa-bungarotoxin blocks an alpha-bungarotoxin-sensitive nicotinic receptor in the insect central nervous system. 1988

R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
Department of Zoology, University of Cambridge, U.K.

Snake venom kappa-neurotoxins are selective antagonists of nicotinic acetylcholine responses in avian, murine and bovine neurons, and have been used as probes for functionally defined vertebrate neuronal nicotinic receptors. The actions of kappa-bungarotoxin, a kappa-neurotoxin, have now been examined at a central invertebrate nicotinic receptor. kappa-Bungarotoxin is a potent antagonist (IC50 = 100 nM) of nicotinic responses, producing a long-lasting blockade of insect nicotinic acetylcholine receptors. The blockade appears to be competitive, and voltage-clamp experiments on an identified cockroach motorneuron indicate that the actions of kappa-bungarotoxin are not dependent on membrane potential. alpha-Bungarotoxin is also a potent antagonist at the cockroach central nicotinic receptor, and binds (Kd = 4.3 nM) to a nicotinic site in cockroach nervous tissue. kappa-Bungarotoxin recognizes this invertebrate nicotinic site with high affinity (Ki = 27 nM). A comparison of the pharmacological properties of insect nicotinic receptors with those of functionally defined receptors identified by kappa-neurotoxins in avian autonomic ganglia reveals several similarities. However, a striking exception is alpha-bungarotoxin, which is the most potent antagonist examined at cockroach nicotinic receptors, but fails to recognize functional autonomic ganglia nicotinic receptors even at very high concentrations. It is concluded that kappa-neurotoxins can be used as selective probes for neuronal nicotinic receptors in both vertebrates and invertebrates. Although invertebrates diverged from vertebrates over 600 million years ago, the results indicate that the neuronal nicotinic receptors found in species as diverse as cockroach and chick retain considerable structural similarity, and thus neuronal nicotinic receptors appear to be highly conserved membrane proteins.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D003058 Cockroaches Insects of the order Dictyoptera comprising several families including Blaberidae, BLATTELLIDAE, Blattidae (containing the American cockroach PERIPLANETA americana), Cryptocercidae, and Polyphagidae. Blaberidae,Blattaria,Blattidae,Blattodea,Cryptocercidae,Dictyoptera,Polyphagidae,Cockroach,Blattarias,Blattodeas,Cockroache,Cockroachs,Dictyopteras
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
January 1993, Archives of insect biochemistry and physiology,
R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
December 1978, Biochimica et biophysica acta,
R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
January 1989, The Journal of experimental biology,
R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
January 1981, Neuroscience,
R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
March 1980, Molecular pharmacology,
R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
June 1995, Neuropharmacology,
R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
September 1993, The Journal of experimental biology,
R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
December 1979, Journal of neurochemistry,
R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
December 1994, Journal of receptor research,
R D Pinnock, and S C Lummis, and V A Chiappinelli, and D B Sattelle
June 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!