Dynamic N6-methyladenosine RNA methylation in brain and diseases. 2020

Andrew M Shafik, and Emily G Allen, and Peng Jin
Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA.

N6-methyladenosine (m6A) is a dynamic RNA modification that regulates various aspects of RNA metabolism and has been implicated in many biological processes and transitions. m6A is highly abundant in the brain; however, only recently has the role of m6A in brain development been a focus. The machinery that controls m6A is critically important for proper neurodevelopment, and the precise mechanisms by which m6A regulates these processes are starting to emerge. However, the role of m6A in neurodegenerative and neuropsychiatric diseases still requires much elucidation. This review discusses and summarizes the current body of knowledge surrounding the function of the m6A modification in regulating normal brain development, neurodegenerative diseases and outlines possible future directions.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D001523 Mental Disorders Psychiatric illness or diseases manifested by breakdowns in the adaptational process expressed primarily as abnormalities of thought, feeling, and behavior producing either distress or impairment of function. Mental Illness,Psychiatric Diseases,Psychiatric Disorders,Psychiatric Illness,Behavior Disorders,Diagnosis, Psychiatric,Mental Disorders, Severe,Psychiatric Diagnosis,Illness, Mental,Mental Disorder,Mental Disorder, Severe,Mental Illnesses,Psychiatric Disease,Psychiatric Disorder,Psychiatric Illnesses,Severe Mental Disorder,Severe Mental Disorders
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D042421 Histone Code The specific patterns of changes made to HISTONES, that are involved in assembly, maintenance, and alteration of chromatin structural states (such as EUCHROMATIN and HETEROCHROMATIN). The changes are made by various histone modification processes that include ACETYLATION; METHYLATION; PHOSPHORYLATION; and UBIQUITINATION. Histone Marks,Histone Modifications,Code, Histone,Histone Mark,Mark, Histone,Marks, Histone,Modifications, Histone
D055495 Neurogenesis Formation of NEURONS which involves the differentiation and division of STEM CELLS in which one or both of the daughter cells become neurons. Neurogeneses
D019636 Neurodegenerative Diseases Hereditary and sporadic conditions which are characterized by progressive nervous system dysfunction. These disorders are often associated with atrophy of the affected central or peripheral nervous system structures. Degenerative Diseases, Nervous System,Degenerative Diseases, Central Nervous System,Degenerative Diseases, Neurologic,Degenerative Diseases, Spinal Cord,Degenerative Neurologic Diseases,Degenerative Neurologic Disorders,Nervous System Degenerative Diseases,Neurodegenerative Disorders,Neurologic Degenerative Conditions,Neurologic Degenerative Diseases,Neurologic Diseases, Degenerative,Degenerative Condition, Neurologic,Degenerative Conditions, Neurologic,Degenerative Neurologic Disease,Degenerative Neurologic Disorder,Neurodegenerative Disease,Neurodegenerative Disorder,Neurologic Degenerative Condition,Neurologic Degenerative Disease,Neurologic Disease, Degenerative,Neurologic Disorder, Degenerative,Neurologic Disorders, Degenerative

Related Publications

Andrew M Shafik, and Emily G Allen, and Peng Jin
January 2019, Wiley interdisciplinary reviews. RNA,
Andrew M Shafik, and Emily G Allen, and Peng Jin
December 2023, Autoimmunity,
Andrew M Shafik, and Emily G Allen, and Peng Jin
January 2022, Frontiers in cardiovascular medicine,
Andrew M Shafik, and Emily G Allen, and Peng Jin
March 2018, RNA (New York, N.Y.),
Andrew M Shafik, and Emily G Allen, and Peng Jin
October 2022, Experimental biology and medicine (Maywood, N.J.),
Andrew M Shafik, and Emily G Allen, and Peng Jin
August 2023, Journal of gastroenterology,
Andrew M Shafik, and Emily G Allen, and Peng Jin
March 2023, Genes & diseases,
Andrew M Shafik, and Emily G Allen, and Peng Jin
January 2024, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Andrew M Shafik, and Emily G Allen, and Peng Jin
January 2019, Nature chemical biology,
Andrew M Shafik, and Emily G Allen, and Peng Jin
August 2019, Analytical biochemistry,
Copied contents to your clipboard!