Effects of Na+ and Ca2+ gradients on intracellular free Ca2+ in voltage-clamped Aplysia neurons. 1988

S Levy, and D Tillotson
Department of Physiology, Boston University School of Medicine, MA 02118.

Selected neurons of the abdominal ganglion of Aplysia californica were voltage-clamped and intracellular free Ca [( Ca2+]i) and Na [( Na+]i) concentrations were monitored with ion selective microelectrodes. Reducing [Na+]o from 500 mM (normal seawater, NSW) to 5 mM resulted in a decrease of the potential measured by the Ca electrode (VCa). Increasing [Ca2+]o from 10 to 50 mM increased [Ca2+]i two-fold, keeping [Ca2+]o at 50 mM and decreasing [Na+]o to 5 mM still led to a decrease in VCa. With 100 mM [Ca2+]o, which also increased [Ca2+]i, decreasing [Na+]o increased VCa in two of the eight cells tested. This indicates that in normal or moderately high resting [Ca2+]i, Ca2+ extrusion by Na/Ca exchange (forward mode) is not essential for [Ca2+]i buffering. [Na+]i was 12.9 +/- 3.6 mM (S.E.M., n = 7) in NSW; reducing [Na+]o to 5 mM decreased [Na+]i to 2.0 +/- 1.1 mM (S.E.M.). Keeping [Na+]o at 5 mM and increasing [Ca2+]o from 10 to 20 mM further decreased [Na+]i to about 1.0 mM, evidence of Na/Ca exchange operating in the reverse mode. Attempts to increase [Ca2+]i by bath application of the Ca ionophores A23187, X537A, ionomycin or ETH 1001 resulted in no measurable change of the resting [Ca2+]i. Application of Ouabain caused an apparent increase in [Ca2+]i in two of the six cells tested. In cells injected with the metallochromic indicator arsenazo III (AIII), the rate of the falling phase of the AIII absorbance increase, following a voltage-clamp pulse, was significantly slower in 5 mM [Na+]o. This indicates that in its forward mode Na-Ca exchange is active in clearing large submembrane increases in [Ca2+]i.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

S Levy, and D Tillotson
December 1984, Proceedings of the National Academy of Sciences of the United States of America,
S Levy, and D Tillotson
January 1982, Pflugers Archiv : European journal of physiology,
S Levy, and D Tillotson
June 1984, Cellular and molecular neurobiology,
S Levy, and D Tillotson
April 1977, Proceedings of the National Academy of Sciences of the United States of America,
S Levy, and D Tillotson
March 1991, The Japanese journal of psychiatry and neurology,
S Levy, and D Tillotson
September 1975, Comparative biochemistry and physiology. A, Comparative physiology,
S Levy, and D Tillotson
March 1974, Brain research,
Copied contents to your clipboard!