A muscarinic receptor subtype modulates vagally stimulated bronchial contraction. 1988

J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
Division of Respiratory Sciences (Westend Laboratories), University of Arizona College of Medicine, Tucson 85724.

An in vitro preparation was developed to study vagus nerve-stimulated (preganglionic) and field-stimulated (post-ganglionic) contraction of the rabbit main stem bronchus and to compare the inhibitory effects of muscarinic antagonists on that contraction. The maximal contractile responses (20 V, 0.5 ms, 64 Hz) for either field or vagal stimulation were completely abolished by atropine (60 nM). Hexamethonium (0.1 mM) abolished the response to vagal stimulation but did not affect the field-stimulated response. To compare the effectiveness of atropine and pirenzepine as antagonists at the nerve-smooth muscle junction, inhibition studies of field-stimulated contractions were performed. Pirenzepine was 102- to 178-fold less potent than atropine when compared at the inhibitory concentration of antagonist that produced 25, 50, and 75% inhibition (IC25, IC50, and IC75, respectively), indicating that the muscarinic receptor at the nerve-smooth muscle junction is a muscarinic receptor with low affinity for pirenzepine (M2 subtype). Atropine had similar inhibitory effects on vagal- and field-stimulated contractions. In contrast, pirenzepine was more potent in inhibiting vagally stimulated contraction than field-stimulated contraction, especially at the IC25 where pirenzepine was only 8- to 22-fold less potent than atropine in inhibiting vagally stimulated contraction. These data suggest that an M1 subtype of muscarinic receptor modulates excitatory neurotransmission through bronchial parasympathetic ganglia.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D010890 Pirenzepine An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as CIMETIDINE and RANITIDINE. It is generally well tolerated by patients. Gastrotsepin,Gastrozepin,L-S 519,LS-519,Piren-Basan,Pirenzepin,Pirenzepin Von Ct,Pirenzepin-Ratiopharm,Pirenzepine Dihydrochloride,Pyrenzepine,Ulcoprotect,Ulgescum,Dihydrochloride, Pirenzepine,LS 519,LS519,Piren Basan,Pirenzepin Ratiopharm,Von Ct, Pirenzepin
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
November 1985, British journal of pharmacology,
J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
September 2002, American journal of physiology. Regulatory, integrative and comparative physiology,
J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
September 1995, The Journal of pharmacology and experimental therapeutics,
J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
September 2003, American journal of physiology. Regulatory, integrative and comparative physiology,
J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
January 2018, European journal of pharmacology,
J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
January 1997, Life sciences,
J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
March 1990, Neuroscience letters,
J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
August 1995, Naunyn-Schmiedeberg's archives of pharmacology,
J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
June 1994, Journal of veterinary pharmacology and therapeutics,
J W Bloom, and C Baumgartener-Folkerts, and J D Palmer, and H I Yamamura, and M Halonen
January 1992, Japanese journal of pharmacology,
Copied contents to your clipboard!