Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. 1988

B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
INSERM U 106, Bâtiment de Pédiatrie, Hopital Salpêtrière, Paris, France.

The regional density and laminar distribution of dopamine (DA) and serotonin (5-HT) afferents were investigated in the cerebral cortex of cynomolgus monkeys using a radioautographic technique that is based on the high affinity uptake capacity of these aminergic neurons. Large vibratome sections, 50 micron thick, were incubated with [3H] DA (0.2 microM) and desipramine (5 microM) or with unlabeled norepinephrine (5 microM) and [3H] 5-HT (0.6 microM), which allowed for the specific labeling of the DA and 5-HT innervations, respectively. After fixation, these sections were dried, defatted, and radioautographed by dipping. Semiquantitative data on the DA innervation also were provided by counting [3H] DA-labeled axonal varicosities in radioautographs from 4-micron-thick sections of the slices obtained after epon embedding. The DA innervation was widespread and differed in density and laminar distribution in the agranular and granular cortices. DA afferents were densest in the anterior cingulate (area 24) and the motor areas (areas 4, 6, and supplementary motor area [SMA]). In the latter they displayed a trilaminar pattern of distribution, predominating in layers I, IIIa, and V-VI, with characteristic cluster-like formations in layer IIIa, especially in the medial part of motor areas. In the granular prefrontal (areas 46, 9, 10, 11, 12), parietal (areas 1, 2, 3, 5, 7), temporal (areas 21, 22), and posterior cingulate (area 23) cortices, DA afferents were less dense and showed a bilaminar pattern of distribution, predominating in the depth of layer I and in layers V-VI; density in layers II, III, and IV was only 20% of that in layer I. The lowest density was in the visual cortex, particularly in area 17, where the DA afferents were almost restricted to layer I. The density of 5-HT innervation was generally greater than that of DA except in the motor areas and in the anterior cingulate cortex. Region-specific laminar patterns characterized (1) motor areas where a lower density in layer III contrasted with the clusters of DA axons in the same layer; (2) the primary visual cortex (area 17), where two bands of higher density in layers III-IV and layer V outlined a poorly innervated zone in layer IVc-beta; (3) the peristriate area 18, where the 5-HT network was relatively loose but with a denser band in layer III. Thus, DA innervation of the cerebral cortex displays major differences between rodents and primates, characterized by expanded cortical targets and by a highly differentiated laminar distribution.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
June 1987, Neuroscience,
B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
January 1989, Journal of chemical neuroanatomy,
B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
August 1988, The Journal of comparative neurology,
B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
March 2001, The Journal of comparative neurology,
B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
October 2009, Journal of chemical neuroanatomy,
B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
January 1982, Brain research bulletin,
B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
February 2007, NeuroImage,
B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
May 1989, Brain research,
B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
November 1989, The Journal of comparative neurology,
B Berger, and S Trottier, and C Verney, and P Gaspar, and C Alvarez
February 1986, Brain research,
Copied contents to your clipboard!