Synaptic organization of serotonin-immunoreactive fibers in primary visual cortex of the macaque monkey. 1988

A D de Lima, and F E Bloom, and J H Morrison
Division of Preclinical Neuroscience and Endocrinology, Research Institute of the Scripps Clinic, La Jolla, California 92037.

The macaque neocortex is very densely innervated by serotonin-containing fibers. The highest density of these fibers is in primary sensory regions such as the primary visual cortex. By using an antibody against serotonin, we analyzed the distribution and morphology of serotonin-immunoreactive fibers and synapses in the primary visual cortex of the adult cynomolgus monkey. In addition, we quantified the laminar distribution of labeled varicosities and the distances between varicosities in single fibers. While serotonin-immunoreactive fibers are found in all cortical layers, at least three bands of heightened density of innervation were readily recognized that were coincident with 1) layer IIIB to IVC alpha, 2) layer VA, and 3) layer VIB. Layer IVC alpha of area 17 contained more varicosities per unit area than any other sublayer. There was a high degree of variability in the intervaricosity distances along single fibers; more than half were longer than 10 microns. At the electron microscopic level, synaptic contacts were also observed throughout the entire thickness of area 17, with the highest frequency in layer IV. The labeled varicosities were packed with electron-lucent synaptic vesicles and formed synaptic complexes with small, but conspicuous, post-synaptic densities. Dendritic shafts were the most common postsynaptic target of the labeled synapses. Among these characteristically slender post-synaptic shafts, profiles with structural features of both spiny and smooth dendrites were observed. The small diameter of most of the postsynaptic dendrites indicated that distal dendrites were preferentially contacted by serotonin-immunoreactive varicosities. Although direct identification of the postsynaptic neurons will be required for complete characterization of this circuitry, the distribution of serotonin-immunoreactive varicosities suggests that serotoninergic interactions in the primary visual cortex of the cynomolgus monkey are directed predominantly at the distal dendrites of granular and infragranular neurons rather than at targets in the supragranular layers.

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

A D de Lima, and F E Bloom, and J H Morrison
January 1988, Annual review of neuroscience,
A D de Lima, and F E Bloom, and J H Morrison
December 2005, Cerebral cortex (New York, N.Y. : 1991),
A D de Lima, and F E Bloom, and J H Morrison
January 1998, Annual review of neuroscience,
A D de Lima, and F E Bloom, and J H Morrison
January 1984, Anatomy and embryology,
A D de Lima, and F E Bloom, and J H Morrison
January 1990, Cold Spring Harbor symposia on quantitative biology,
A D de Lima, and F E Bloom, and J H Morrison
July 2017, Nature,
A D de Lima, and F E Bloom, and J H Morrison
July 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A D de Lima, and F E Bloom, and J H Morrison
September 1998, Nature,
A D de Lima, and F E Bloom, and J H Morrison
August 1993, The Journal of comparative neurology,
Copied contents to your clipboard!