Cell death in suboptic necrotic centers of chick embryo diencephalon and their topographic relationship with the earliest optic fiber fascicles. 1988

J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
Departamento de Ciencias Morfológicas y Biología Celular y Animal, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.

The structural features of suboptic necrotic centers (SONCs) in the floor of the chick embryo diencephalon were studied. These necrotic areas were observed lateral to the prospective zone of the optic chiasm through developmental stages 14 to 24. The relationship between SONCs and the earliest optic fiber fascicles also was studied in an attempt to determine the possible significance of these cell death areas in the mechanism of optic pathway development. In SONCs, healthy neuroepithelial cells contain primary lysosomes and phagocytose fragments of dead cells. Discrete regions within the cytoplasm of some cells show electron-transparent vacuoles in contact with dense contents of ruptured lytic bodies. The cytoplasm of dying cells and dead cell fragments are notably electron dense, with numerous secondary lysosomes and electron-transparent vacuoles. These observations are interpreted on the assumption that after autophagic processes, condensation and fragmentation take place in dying cells of the SONCs. In the ventricular lumen adjacent to the SONCs, numerous more or less spherical bodies are observed that appear to be shed from the tip of the cells constituting the SONCs. Three different types of intraventricular bodies can be distinguished: loose, moderately dense, and highly dense. The first type appears to originate from apical portions of cells that undergo autolytic processes. Moderately dense fragments are interpreted as originating from dying cells in which the cytoplasm is undergoing condensation. Finally, highly dense intraventricular bodies appear to be fragments of dead cells that are shed into the ventricular lumen. SONCs separate the prospective area of the optic chiasm from lateral regions of the diencephalic floor. Extracellular spaces are poorly developed within the wall of the SONCs, whereas the neuroepithelium of the presumptive optic chiasm and regions located rostral and caudal to SONCs show abundant and extensive extracellular spaces. These are bounded by long marginal processes of neuroepithelial cells. Sagittal sections of embryonic heads at stages 22-24 reveal optic fiber fascicles penetrating the SONCs asymmetrically, as they are found only in its caudal half. These observations suggest that the SONCs function as doorways made of compact neuroepithelium, to be traversed by the earliest optic fibers before they reach the middle zone of the floor of the diencephalon through which they travel to the contralateral optic tract within large extracellular spaces.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009897 Optic Chiasm The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes. Chiasma Opticum,Optic Chiasma,Optic Decussation,Chiasm, Optic,Chiasma Opticums,Chiasma, Optic,Chiasmas, Optic,Chiasms, Optic,Decussation, Optic,Decussations, Optic,Optic Chiasmas,Optic Chiasms,Optic Decussations,Opticum, Chiasma,Opticums, Chiasma
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
October 1979, Journal of morphology,
J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
April 1984, Journal of embryology and experimental morphology,
J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
March 1972, Brain research,
J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
November 2005, Anatomy and embryology,
J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
January 1989, Anatomy and embryology,
J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
December 1965, Experimental neurology,
J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
September 1997, Development (Cambridge, England),
J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
January 1988, Anatomy and embryology,
J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
August 1980, Acta morphologica Neerlando-Scandinavica,
J Navascués, and G Martín-Partido, and I S Alvarez, and L Rodríguez-Gallardo
January 1985, Acta anatomica,
Copied contents to your clipboard!