Cytodifferentiation of the chick pineal gland, with special reference to the photosensory and secretory elements. 1988

K Ohshima, and S Matsuo
Laboratory of Functional Anatomy, Faculty of Agriculture, Shinshu University, Nagano-ken, Japan.

Cytodifferentiation of the chick pineal gland throughout the embryonic development was investigated with light and electron microscopy. The chick pineal anlage appears first as a small evagination in the diencephalic roof at 60 h of incubation (27-30 somites). Until day 5 of incubation, pineal anlage cells are undifferentiated and appear similar to ventricular ependymal cells. Subsequently, pinealocytes and supporting cells are first distinguishable at 7-8 days, and parafollicular cells are distinguishable at 12 days of incubation. Pigment-containing cells after 6 days and nerve cells after 17 days of incubation gradually increase, especially in the posterior wall of the pineal recess. During embryonic development, the chick pineal gland has both photosensory and secretory elements: viz. the former, mitochondria-laden apical protrusions, synaptic ribbons, lamellar whorl-like cilia of the pinealocytes, and adjacent appearance of the pigment-containing cells and the nerve cells; and the latter, dense-cored vesicles of the pinealocytes and dense bodies of the supporting cells. Moreover, nuclear invaginations having a large lipid droplet nearby and some aggregations of glycogen are found in the pinealocytes and are transitory changes in structure restricted to certain days of incubation.

UI MeSH Term Description Entries
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Ohshima, and S Matsuo
January 1979, Progress in brain research,
K Ohshima, and S Matsuo
January 1954, Zeitschrift fur mikroskopisch-anatomische Forschung,
K Ohshima, and S Matsuo
January 2013, Journal of oral microbiology,
K Ohshima, and S Matsuo
July 1971, Nihon rinsho. Japanese journal of clinical medicine,
K Ohshima, and S Matsuo
March 1991, Journal of pineal research,
K Ohshima, and S Matsuo
June 1959, Gastroenterology,
Copied contents to your clipboard!