Paraburkholderia flava sp. nov., isolated from cool temperate forest soil. 2020

Ngoc Hoang Trinh, and Jaisoo Kim
Thai Nguyen University of Sciences, Thai Nguyen City, Thai Nguyen Province 250000, Vietnam.

A Gram-stain-negative, aerobic and short rod-shaped bacterial strain, designated LD6T, was isolated from a forest soil sample in Suwon, Gyeonggi-do, Republic of Korea. Strain LD6T grew at 10-37 °C (optimal temperature, 28 °C), and tolerated pH 8.0 and 2 % (w/v) NaCl. Strain LD6T was related most closely to members of the genus Paraburkholderia, namely Paraburkholderia azotifigens NF2-5-3T (98.2 % 16S rRNA gene sequence similarity), P. megapolitana A3T (97.9 %), P. ginsengiterrae DCY85T (97.9 %) and P. caribensis MWAP64T (97.7 %). The strain grew well on R2A agar, tryptone soya agar, Mueller-Hinton agar and nutrient agar. The major polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, aminophospholipid and glycolipid. The major respiratory quinone was ubiquinone 8 (Q-8). The main fatty acids were C17 : 0 cyclo, C16 : 0, C16 : 0 3-OH, C19 : 0 cyclo ω8c and C12 : 0. The DNA G+C content of the isolated strain based on the whole genome sequence was 63.4 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain LD6T and its reference type strains ranged from 80.3 to 82.4%, and from 23.7 to 33.7%, respectively. Based on phenotypic, chemotypic and genotypic evidence, strain LD6T could be differentiated phylogenetically and phenotypically from the recognized species of the genus Paraburkholderia. Therefore, strain LD6T is considered to represent a novel species, for which the name Paraburkholderia flava sp. nov. is proposed. The type strain is LD6T (=KACC 21387T=JCM 33640T).

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D012988 Soil Microbiology The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms. Microbiology, Soil
D014451 Ubiquinone A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals. Coenzyme Q
D015373 Bacterial Typing Techniques Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping. Bacteriocin Typing,Biotyping, Bacterial,Typing, Bacterial,Bacterial Biotyping,Bacterial Typing,Bacterial Typing Technic,Bacterial Typing Technics,Bacterial Typing Technique,Technic, Bacterial Typing,Technics, Bacterial Typing,Technique, Bacterial Typing,Techniques, Bacterial Typing,Typing Technic, Bacterial,Typing Technics, Bacterial,Typing Technique, Bacterial,Typing Techniques, Bacterial,Typing, Bacteriocin

Related Publications

Ngoc Hoang Trinh, and Jaisoo Kim
December 2019, International journal of systematic and evolutionary microbiology,
Ngoc Hoang Trinh, and Jaisoo Kim
May 2019, International journal of systematic and evolutionary microbiology,
Ngoc Hoang Trinh, and Jaisoo Kim
June 2019, International journal of systematic and evolutionary microbiology,
Ngoc Hoang Trinh, and Jaisoo Kim
September 2017, International journal of systematic and evolutionary microbiology,
Ngoc Hoang Trinh, and Jaisoo Kim
January 2019, International journal of systematic and evolutionary microbiology,
Ngoc Hoang Trinh, and Jaisoo Kim
March 2012, International journal of systematic and evolutionary microbiology,
Ngoc Hoang Trinh, and Jaisoo Kim
December 2021, International journal of systematic and evolutionary microbiology,
Ngoc Hoang Trinh, and Jaisoo Kim
March 2019, International journal of systematic and evolutionary microbiology,
Copied contents to your clipboard!