Recognition of the DNA helix stabilizing anthramycin-N2 guanine adduct by UVRABC nuclease. 1988

R B Walter, and J Pierce, and R Case, and M S Tang
University of Texas System Cancer Center, Science Park-Research Division, Smithville 78957.

The binding of the anti-tumor antibiotic anthramycin to a defined linear DNA fragment was investigated using both exonuclease III and lambda exonuclease. We show that most of the guanine residues are reactive toward anthramycin; however, several guanine residues showed preferential reactivity for the drug. Using purified UVRA, UVRB and UVRC proteins we present evidence that these three proteins in concert are able to recognize and produce specific strand cleavage flanking anthramycin-DNA adducts. The cleavage of anthramycin adducts by UVRABC nuclease is specific and results in strand breaks at five or six bases 5' and three or four bases 3'-flanking an adduct. At some guanine residues single incisions were observed only on one side of the adduct. The 5' strand breaks observed often occurred as doublet bands on sequencing gels, indicating plasticity in the site of 5' cleavage whereas the 3' cleavage did not show this effect. When DNA fragments modified with elevated levels of anthramycin were used as substrates the activity of the UVRABC nuclease toward the anthramycin adducts decreased. Possible mechanisms for the recognition and specific cleavage of the helix-stabilizing anthramycin DNA adduct and other helix destabilizing lesions by the UVRABC nuclease are discussed.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D006147 Guanine
D000876 Anthramycin A broad-spectrum spectrum antineoplastic antibiotic isolated from Streptomyces refuineus var. thermotolerans. It has low toxicity, some activity against Trichomonas and Endamoeba, and inhibits RNA and DNA synthesis. It binds irreversibly to DNA. Anthramycin, (11a alpha)-Isomer,Antramycin
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001570 Benzodiazepinones

Related Publications

R B Walter, and J Pierce, and R Case, and M S Tang
August 1991, Journal of molecular biology,
R B Walter, and J Pierce, and R Case, and M S Tang
December 1992, The Journal of biological chemistry,
R B Walter, and J Pierce, and R Case, and M S Tang
September 2005, Mutation research,
R B Walter, and J Pierce, and R Case, and M S Tang
February 2001, Molecules and cells,
R B Walter, and J Pierce, and R Case, and M S Tang
February 1988, Biochemistry,
R B Walter, and J Pierce, and R Case, and M S Tang
November 1979, Nature,
R B Walter, and J Pierce, and R Case, and M S Tang
March 2010, Toxicology letters,
R B Walter, and J Pierce, and R Case, and M S Tang
July 1989, Biochemistry,
Copied contents to your clipboard!