Autophagy of bovine mammary epithelial cell induced by intracellular Staphylococcus aureus. 2020

Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China.

Bovine mastitis is a common disease in the dairy industry that causes great economic losses. As the primary pathogen of contagious mastitis, Staphylococcus aureus (S. aureus) can invade bovine mammary epithelial cells, thus evading immune defenses and resulting in persistent infection. Recently, autophagy has been considered an important mechanism for host cells to clear intracellular pathogens. In the current study, autophagy caused by S. aureus was detected, and the correlation between autophagy and intracellular S. aureus survival was assessed. First, a model of intracellular S. aureus infection was established. Then, the autophagy of MAC-T cells was evaluated by confocal microscopy and western blot. Moreover, the activation of the PI3K-Akt-mTOR and ERK1/2 signaling pathways was determined by western blot. Finally, the relationship between intracellular bacteria and autophagy was analyzed by using autophagy regulators (3-methyladenine [3-MA], rapamycin [Rapa] and chloroquine [CQ]). The results showed that S. aureus caused obvious induction of autophagosome formation, transformation of LC3I/II, and degradation of p62/SQSTM1 in MAC-T cells; furthermore, the PI3K-Akt-mTOR and ERK1/2 signaling pathways were activated. The number of intracellular S. aureus increased significantly with autophagy activation by rapamycin, whereas the number decreased when the autophagy flux was inhibited by chloroquine. Therefore, this study indicated that intracellular S. aureus can induce autophagy and utilize it to survive in bovine mammary epithelial cells.

UI MeSH Term Description Entries
D008414 Mastitis, Bovine INFLAMMATION of the UDDER in cows. Bovine Mastitides,Bovine Mastitis,Mastitides, Bovine
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females
D000076662 Host Microbial Interactions Interactions between a host and microbe or microbiota. Host-Bacteria Interactions,Host-Microbe Interactions,Host-Microbial Interactions,Host-Virus Interactions,Microbe-Host Interactions,Microbial-Host Interactions,Microbiota-Host Interactions,Virus-Host Interactions,Bacteria Host Interactions,Bacterial-Host Interactions,Bacterium-Host Interactions,Host Bacteria Interactions,Host Microbe Interactions,Host Microbiota Interactions,Host Virus Interactions,Host-Fungal Interactions,Host-Microbial Interface,Microbe Host Interactions,Microbial Host Interactions,Microbiota Host Interactions,Viral-Host Interactions,Virus Host Interactions,Bacteria Host Interaction,Bacterial Host Interactions,Bacterial-Host Interaction,Bacterium Host Interactions,Bacterium-Host Interaction,Host Bacteria Interaction,Host Fungal Interactions,Host Microbe Interaction,Host Microbial Interaction,Host Microbial Interface,Host Microbiota Interaction,Host Virus Interaction,Host-Bacteria Interaction,Host-Fungal Interaction,Host-Microbe Interaction,Host-Microbial Interaction,Host-Microbial Interfaces,Host-Virus Interaction,Interaction, Host-Bacteria,Interaction, Host-Microbe,Interaction, Host-Microbial,Interaction, Host-Virus,Interaction, Microbe-Host,Interaction, Microbial-Host,Interaction, Microbiota-Host,Interaction, Virus-Host,Interactions, Host-Bacteria,Interactions, Host-Microbe,Interactions, Host-Microbial,Interactions, Host-Virus,Interactions, Microbe-Host,Interactions, Microbial-Host,Interactions, Microbiota-Host,Interactions, Virus-Host,Microbe Host Interaction,Microbe-Host Interaction,Microbial Host Interaction,Microbial-Host Interaction,Microbiota Host Interaction,Microbiota-Host Interaction,Viral Host Interactions,Viral-Host Interaction,Virus Host Interaction,Virus-Host Interaction
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D013203 Staphylococcal Infections Infections with bacteria of the genus STAPHYLOCOCCUS. Infections, Staphylococcal,Staphylococcus aureus Infection,Staphylococcal Infection,Staphylococcus aureus Infections
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.

Related Publications

Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
January 2009, International journal of microbiology,
Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
September 2019, Journal of dairy science,
Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
February 2017, Antimicrobial agents and chemotherapy,
Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
June 1996, Journal of dairy science,
Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
January 1994, Microbiology and immunology,
Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
September 2021, International journal of molecular sciences,
Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
January 2021, Frontiers in veterinary science,
Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
November 1996, The Journal of dairy research,
Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
April 1994, Journal of dairy science,
Na Geng, and Kangping Liu, and Jianwei Lu, and Yuliang Xu, and Xiaozhou Wang, and Run Wang, and Jianzhu Liu, and Yongxia Liu, and Bo Han
January 2021, Frontiers in veterinary science,
Copied contents to your clipboard!