Application of Fermi scattering theory to a magnetically scanned electron linear accelerator. 1988

G A Sandison, and W Huda
Department of Medical Physics, Manitoba Cancer Treatment and Research Foundation, Winnipeg, Canada.

This paper uses a solution to the Fermi electron transport equation for an isotropic point source to characterize the magnetically scanned broad electron beams from the Sagittaire Therac 40 accelerator in the air space above patients. Thick lead collimation is shown to be adequately modeled by an infinitely thin absorbing plate when used to predict penumbra shape. A relationship between broad beam penumbra width and the value of the root-mean-square spatial Gaussian spread sigma (z) of an elementary pencil beam is derived. This relationship is applicable for any rectangular field size. Measurement of the variation in broad beam penumbra width with source-surface distance (SSD) for a 7-MeV beam locates the isotropic source to be coincident with the exit window of the accelerator and indicates that the scattering effect of the monitor chamber may be considered negligibly small. Using this source location accurate predictions of beam profile shape for any clinically used beam energy, SSD, or field size are made in the presence of lead trimmer collimation. Field penumbra beyond the photon collimation system is formed in each lateral direction by two lead blocks whose faces are aligned along a diverging ray emanating from the source. The photon collimator closest to the source restricts the field size causing a variation of both fluence and the mean square angle spread of the electrons across the plane at the level of the lower collimator. This variation is accounted for by introducing an empirical perturbation factor into the mathematical formalism. An interesting feature of this perturbation factor is that it is field size dependent and its effect on penumbra width may be scaled for both beam energy and SSD to accurately predict beam profile shape.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011878 Radiotherapy The use of IONIZING RADIATION to treat malignant NEOPLASMS and some benign conditions. Radiotherapy, Targeted,Targeted Radiotherapy,Radiation Therapy,Radiation Therapy, Targeted,Radiation Treatment,Targeted Radiation Therapy,Radiation Therapies,Radiation Therapies, Targeted,Radiation Treatments,Radiotherapies,Radiotherapies, Targeted,Targeted Radiation Therapies,Targeted Radiotherapies,Therapies, Radiation,Therapies, Targeted Radiation,Therapy, Radiation,Therapy, Targeted Radiation,Treatment, Radiation
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation

Related Publications

G A Sandison, and W Huda
February 1948, The Review of scientific instruments,
G A Sandison, and W Huda
January 1976, Medical physics,
G A Sandison, and W Huda
January 1983, Medical physics,
G A Sandison, and W Huda
June 1951, The Review of scientific instruments,
G A Sandison, and W Huda
August 1949, The British journal of radiology,
G A Sandison, and W Huda
October 2019, Physical review letters,
G A Sandison, and W Huda
March 1967, Journal of the Canadian Association of Radiologists,
G A Sandison, and W Huda
December 1973, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
Copied contents to your clipboard!