Functionality of primary hepatic non-parenchymal cells in a 3D spheroid model and contribution to acetaminophen hepatotoxicity. 2020

Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden. catherine.bell@astrazeneca.com.

In addition to hepatocytes, the liver comprises a host of specialised non-parenchymal cells which are important to consider in the development of in vitro models which are both physiologically and toxicologically relevant. We have characterized a 3D co-culture system comprising primary human hepatocytes (PHH) and non-parenchymal cells (NPC) and applied it to the investigation of acetaminophen-induced toxicity. Firstly, we titrated ratios of PHH:NPC and confirmed the presence of functional NPCs via both immunohistochemistry and activation with both LPS and TGF-β. Based on these data we selected a ratio of 2:1 PHH:NPC for further studies. We observed that spheroids supplemented with NPCs were protected against acetaminophen (APAP) toxicity as determined by ATP (up to threefold difference in EC50 at day 14 compared to hepatocytes alone) and glutathione depletion, as well as miR-122 release. APAP metabolism was also altered in the presence of NPCs, with significantly lower levels of APAP-GSH detected. Expression of several CYP450 enzymes involved in the bioactivation of APAP was also lower in NPC-containing spheroids. Spheroids containing NPCs also expressed higher levels of miRNAs which have been implicated in APAP-induced hepatotoxicity, including miR-382 and miR-155 which have potential roles in liver regeneration and inflammation, respectively. These data indicate that the interaction between hepatocytes and NPCs can have significant metabolic and toxicological consequences important for the correct elucidation of hepatic safety mechanisms.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000082 Acetaminophen Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage. Acetamidophenol,Hydroxyacetanilide,Paracetamol,APAP,Acamol,Acephen,Acetaco,Acetominophen,Algotropyl,Anacin-3,Datril,N-(4-Hydroxyphenyl)acetanilide,N-Acetyl-p-aminophenol,Panadol,Tylenol,p-Acetamidophenol,p-Hydroxyacetanilide,Anacin 3,Anacin3
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D056486 Chemical and Drug Induced Liver Injury A spectrum of clinical liver diseases ranging from mild biochemical abnormalities to ACUTE LIVER FAILURE, caused by drugs, drug metabolites, herbal and dietary supplements and chemicals from the environment. Drug-Induced Liver Injury,Liver Injury, Drug-Induced,Acute Liver Injury, Drug-Induced,Chemically-Induced Liver Toxicity,Drug-Induced Acute Liver Injury,Drug-Induced Liver Disease,Hepatitis, Drug-Induced,Hepatitis, Toxic,Liver Injury, Drug-Induced, Acute,Toxic Hepatitis,Acute Liver Injury, Drug Induced,Chemically Induced Liver Toxicity,Chemically-Induced Liver Toxicities,Disease, Drug-Induced Liver,Diseases, Drug-Induced Liver,Drug Induced Acute Liver Injury,Drug Induced Liver Disease,Drug Induced Liver Injury,Drug-Induced Hepatitides,Drug-Induced Hepatitis,Drug-Induced Liver Diseases,Drug-Induced Liver Injuries,Hepatitides, Drug-Induced,Hepatitides, Toxic,Hepatitis, Drug Induced,Injuries, Drug-Induced Liver,Injury, Drug-Induced Liver,Liver Disease, Drug-Induced,Liver Diseases, Drug-Induced,Liver Injuries, Drug-Induced,Liver Injury, Drug Induced,Liver Toxicities, Chemically-Induced,Liver Toxicity, Chemically-Induced,Toxic Hepatitides,Toxicities, Chemically-Induced Liver,Toxicity, Chemically-Induced Liver
D018712 Analgesics, Non-Narcotic A subclass of analgesic agents that typically do not bind to OPIOID RECEPTORS and are not addictive. Many non-narcotic analgesics are offered as NONPRESCRIPTION DRUGS. Non Opioid Analgesic,Non-Opioid Analgesic,Nonopioid Analgesic,Nonopioid Analgesics,Analgesics, Nonnarcotic,Analgesics, Nonopioid,Non-Opioid Analgesics,Analgesic, Non Opioid,Analgesic, Non-Opioid,Analgesic, Nonopioid,Analgesics, Non Narcotic,Analgesics, Non-Opioid,Non Opioid Analgesics,Non-Narcotic Analgesics,Nonnarcotic Analgesics,Opioid Analgesic, Non

Related Publications

Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
August 2023, Journal of pharmaceutical analysis,
Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
January 1985, Xenobiotica; the fate of foreign compounds in biological systems,
Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
June 2018, Toxicological sciences : an official journal of the Society of Toxicology,
Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
August 1998, The American journal of pathology,
Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
March 2019, Environmental pollution (Barking, Essex : 1987),
Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
March 2011, Hepatology (Baltimore, Md.),
Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
January 2014, Toxicology and applied pharmacology,
Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
May 1980, Acta pharmacologica et toxicologica,
Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
April 2020, Journal of visualized experiments : JoVE,
Catherine C Bell, and Bhavik Chouhan, and Linda C Andersson, and Håkan Andersson, and James W Dear, and Dominic P Williams, and Magnus Söderberg
May 2024, Toxicology,
Copied contents to your clipboard!