The endomorphin-1/2 and dynorphin-B peptides display biased agonism at the mu opioid receptor. 2020

Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
Department of Pharmacology, College of Medicine, University of Arizona, Box 245050, LSN563, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA.

BACKGROUND Opioid agonist activation at the mu opioid receptor (MOR) can lead to a wide variety of physiological responses. Many opioid agonists share the ability to selectively and preferentially activate specific signaling pathways, a term called biased agonism. Biased opioid ligands can theoretically induce specific physiological responses and might enable the generation of drugs with improved side effect profiles. METHODS Dynorphins, enkephalins, and endomorphins are endogenous opioid agonist peptides that may possess distinct bias profiles; biased agonism of endogenous peptides could explain the selective roles of these ligands in vivo. Our purpose in the present study was to investigate biased signaling and potential underlying molecular mechanisms of bias using 35S-GTPγS and cAMP assays, specifically focusing on the role of adenylyl cyclases (ACs) and regulators of G-protein signaling proteins (RGSs) in CHO, N2a, and SH-SY5Y cell lines, all expressing the human MOR. RESULTS We found that endomorphin-1/2 preferentially activated cAMP signaling, while dynorphin-B preferentially activated 35S-GTPγS signaling in most cell lines. Experiments carried out in the presence of an isoform selective RGS-4 inhibitor, and siRNA knockdown of AC6 in N2a cells did not significantly affect the bias properties of endomorphins, suggesting that these proteins may not play a role in endomorphin bias. CONCLUSIONS We found that endomorphin-1/2 and dynorphin-B displayed contrasting bias profiles at the MOR, and ruled out potential AC6 and RGS4 mechanisms in this bias. This identified signaling bias could be involved in specifying endogenous peptide roles in vivo, where these peptides have low selectivity between opioid receptor family members.

UI MeSH Term Description Entries
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
April 1998, European journal of pharmacology,
Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
August 2015, Molecular pharmacology,
Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
August 2012, Molecular pharmacology,
Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
November 2021, Journal of computer-aided molecular design,
Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
February 2000, The European journal of neuroscience,
Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
December 2000, Pharmacology & therapeutics,
Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
August 2016, Biochemical pharmacology,
Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
December 2002, Neuroscience letters,
Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
March 1999, Neuroscience,
Justin LaVigne, and Attila Keresztes, and Daniel Chiem, and John M Streicher
December 2008, Chemical biology & drug design,
Copied contents to your clipboard!