Osmotic work across inner medullary collecting duct accomplished by difference in reflection coefficients for urea and NaCl. 1988

M Imai, and J Taniguchi, and K Yoshitomi
Department of Pharmacology, National Cardiovascular Center, Osaka, Japan.

To demonstrate that osmotic work can be accomplished across the inner medullary collecting duct (IMCD) by the difference in reflection coefficients for urea and NaCl, phenomenological coefficients for urea and NaCl transport were determined in isolated segments of the hamster IMCD perfused in vitro. Arginine vasopressin at 100 microU/ml increased urea permeability from 11.5 +/- 2.9 to 31.7 +/- 4.2 x 10(-7) cm2 s-1 in the middle IMCD but not in the upper IMCD. Urea transport in the middle IMCD consisted of two components, transport with saturable kinetics and simple passive diffusion. Permeability to Na+ was very low (2 x 10(-7) cm2 s-1). Reflection coefficients as measured by the equiosmolality method, with raffinose being a reference solute, were 0.87 +/- 0.05 and 0.71 +/- 0.04 for urea and 1.03 +/- 0.07 and 0.91 +/- 0.04 for NaCl in the upper and the middle IMCD, respectively. Reflection coefficient for urea in the middle IMCD was 0.68 when determined by the zero volume flux method. When the middle IMCD was perfused with bicarbonate Krebs-Ringer (BKR) solution containing 200 mmol/l urea, the replacement of urea in the bathing fluid with equisomolal NaCl caused large volume flux (3.81 +/- 0.45 nl mm-1 min-1) associated with dilatation of intercellular space. The existence of vasopressin in the bath was essential for this phenomenon. This effect was inhibited by 5 x 10(-4) M phloretin in the bath, suggesting that the vasoressin-stimulated urea transport is responsible for this phenomenon. From these observations, we conclude that transport parameters of the middle IMCD are appropriate for accomplishment of osmotic work across this segment in the absence of physicochemical osmotic gradients.

UI MeSH Term Description Entries
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009995 Osmosis Tendency of fluids (e.g., water) to move from the less concentrated to the more concentrated side of a semipermeable membrane. Osmoses
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D005260 Female Females

Related Publications

M Imai, and J Taniguchi, and K Yoshitomi
October 1990, The Journal of clinical investigation,
M Imai, and J Taniguchi, and K Yoshitomi
September 1989, The American journal of physiology,
M Imai, and J Taniguchi, and K Yoshitomi
November 1985, The American journal of physiology,
M Imai, and J Taniguchi, and K Yoshitomi
September 1988, The American journal of physiology,
M Imai, and J Taniguchi, and K Yoshitomi
September 1990, The American journal of physiology,
M Imai, and J Taniguchi, and K Yoshitomi
September 1990, Cell and tissue kinetics,
M Imai, and J Taniguchi, and K Yoshitomi
August 1990, The American journal of physiology,
M Imai, and J Taniguchi, and K Yoshitomi
April 1989, The American journal of physiology,
M Imai, and J Taniguchi, and K Yoshitomi
July 1993, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!