Further studies on the reactions of phenylglyoxal and related reagents with proteins. 1977

K Takahashi

1. The reactivities of phenylglyoxal (PGO), glyoxal (GO), and/or methylglyoxal (MGO) with several proteins, including ribonuclease A [EC 3.1.4.22] and its derivatives, alpha-chymotrypsin [EC 3.4.21.1], trypsin [EC 3.4.21.4], lysozyme [EC 3.2.1.17], pepsin [EC 3.4.23.1], rennin [EC 3.4.23.4], thermolysin, and insulin and its B chain, have been examined. From analyses of the reaction products, PGO was shown to be the most specific for arginine residues. GO and MGO also reacted rapidly with arginine residues, but they also reacted with lysine residues to a significant extent. A side reaction with N-terminal alpha-amino groups was observed with each of these reagents. 2. Two arginine residues out of four in ribonuclease A, two out of three in alpha-chymotrypsin, one out of two in trypsin, one out of two in pepsin, and one out of five in rennin appeared to react with PGO fairly rapidly, indicating a difference in the relative accessibility of these residues by the reagent. Extensive modification of the arginine residues by PGO occurred with RCM-derivatives of ribonuclease A and insulin B chain. The N-terminal isoleucine residues of alpha-chymotrypsin and trypsin appeared to be unreactive with PGO because of salt bridge formation with an aspartyl residue. The activity of alpha-chymotrypsin toward N-benzoyl-L-tyrosine ethyl ester and the lytic activity of lysozyme were lost rapidly on treatment with PGO, as in the case of ribonuclease A. Pepsin and rennin were only partially inactivated by reaction with PGO.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D010434 Pepsin A Formed from pig pepsinogen by cleavage of one peptide bond. The enzyme is a single polypeptide chain and is inhibited by methyl 2-diaazoacetamidohexanoate. It cleaves peptides preferentially at the carbonyl linkages of phenylalanine or leucine and acts as the principal digestive enzyme of gastric juice. Pepsin,Pepsin 1,Pepsin 3
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011765 Pyruvaldehyde An organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals. Acetylformaldehyde,Methylglyoxal,Oxopropanal,Pyruvic Aldehyde,Aldehyde, Pyruvic
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D006037 Glyoxal A 2-carbon aldehyde with carbonyl groups on both carbons. Ethanedial,Ethanedione
D000447 Aldehydes Organic compounds containing a carbonyl group in the form -CHO. Aldehyde
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

K Takahashi
January 1947, Advances in protein chemistry,
K Takahashi
February 1950, The Urologic and cutaneous review,
K Takahashi
September 1956, The Biochemical journal,
K Takahashi
May 1962, The Journal of clinical investigation,
K Takahashi
July 1943, Journal of bacteriology,
K Takahashi
November 1953, Orvosi hetilap,
K Takahashi
January 1973, Journal of the Chemical Society. Perkin transactions 1,
K Takahashi
April 2015, Molecules (Basel, Switzerland),
Copied contents to your clipboard!