Directed Metabolic Pathway Evolution Enables Functional Pterin-Dependent Aromatic-Amino-Acid Hydroxylation in Escherichia coli. 2020

Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark.

Tetrahydrobiopterin-dependent hydroxylation of aromatic amino acids is the first step in the biosynthesis of many neuroactive compounds in humans. A fundamental challenge in building these pathways in Escherichia coli is the provision of the non-native hydroxylase cofactor, tetrahydrobiopterin. To solve this, we designed a genetic selection that relies on the tyrosine synthesis activity of phenylalanine hydroxylase. Using adaptive laboratory evolution, we demonstrate the use of this selection to discover: (1) a minimum set of heterologous enzymes and a host folE (T198I) mutation for achieving this type of hydroxylation chemistry in whole cells, (2) functional complementation of tetrahydrobiopterin by indigenous cofactors, and (3) a tryptophan hydroxylase mutation for improving protein abundance. Thus, the goal of having functional aromatic-amino-acid hydroxylation in E. coli was achieved through directed metabolic pathway evolution.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010651 Phenylalanine Hydroxylase An enzyme of the oxidoreductase class that catalyzes the formation of L-TYROSINE, dihydrobiopterin, and water from L-PHENYLALANINE, tetrahydrobiopterin, and oxygen. Deficiency of this enzyme may cause PHENYLKETONURIAS and PHENYLKETONURIA, MATERNAL. EC 1.14.16.1. Phenylalanine 4-Hydroxylase,Phenylalanine 4-Monooxygenase,4-Hydroxylase, Phenylalanine,4-Monooxygenase, Phenylalanine,Hydroxylase, Phenylalanine,Phenylalanine 4 Hydroxylase,Phenylalanine 4 Monooxygenase
D011622 Pterins Compounds based on 2-amino-4-hydroxypteridine. Pterin
D004295 Dihydroxyphenylalanine A beta-hydroxylated derivative of phenylalanine. The D-form of dihydroxyphenylalanine has less physiologic activity than the L-form and is commonly used experimentally to determine whether the pharmacological effects of LEVODOPA are stereospecific. Dopa,3,4-Dihydroxyphenylalanine,3-Hydroxy-DL-tyrosine,Dihydroxyphenylalanine Hydrochloride, (2:1),beta-Hydroxytyrosine,3 Hydroxy DL tyrosine,3,4 Dihydroxyphenylalanine,beta Hydroxytyrosine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006136 GTP Cyclohydrolase (GTP cyclohydrolase I) or GTP 7,8-8,9-dihydrolase (pyrophosphate-forming) (GTP cyclohydrolase II). An enzyme group that hydrolyzes the imidazole ring of GTP, releasing carbon-8 as formate. Two C-N bonds are hydrolyzed and the pentase unit is isomerized. This is the first step in the synthesis of folic acid from GTP. EC 3.5.4.16 (GTP cyclohydrolase I) and EC 3.5.4.25 (GTP cyclohydrolase II). GTP 8-Formylhydrolase,GTP Dihydrolase,GTP Ring-Opening Enzyme,7,8-Dihydroneopterintriphosphate Synthetase,GTP Cyclohydrolase I,GTP Cyclohydrolase II,7,8 Dihydroneopterintriphosphate Synthetase,8-Formylhydrolase, GTP,Cyclohydrolase I, GTP,Cyclohydrolase II, GTP,Cyclohydrolase, GTP,Dihydrolase, GTP,GTP 8 Formylhydrolase,GTP Ring Opening Enzyme,Ring-Opening Enzyme, GTP,Synthetase, 7,8-Dihydroneopterintriphosphate
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D006916 5-Hydroxytryptophan The immediate precursor in the biosynthesis of SEROTONIN from tryptophan. It is used as an antiepileptic and antidepressant. 5-HTP,Hydroxytryptophan,Oxitriptan,Oxytryptophan,Tryptophan, 5-Hydroxy-,5 Hydroxytryptophan,5-Hydroxy- Tryptophan,Tryptophan, 5 Hydroxy
D001708 Biopterins Pterin derivatives based on 2-amino-6-(1,2-dihydroxypropyl)-4(1H)-pteridinone. Biopterins are natural products that have been considered as growth factors for some insects. Biopterins are cofactors for the AROMATIC AMINO ACID hydroxylases and NITRIC OXIDE SYNTHASE. Deficiencies in BIOPTERINS metabolism (e.g., lowered TETRAHYDROBIOPTERIN) are associated with neurological deterioration (e.g., HYPERPHENYLALANINAEMIA). 2-Amino-6-((1S,2R)-1,2-dihydroxypropyl)-4(1H)-pteridinone,2-Amino-6-((1S,2S)-1,2-dihydroxypropyl)-4(1H)-pteridinone,2-Amino-6-(1,2-dihydroxypropyl)-4(8H)-pteridinone,2-amino-6-((1R,2R)-1,2-dihydroxypropyl)-4(3H)-pteridinone,4(1H)-Pteridinone, 2-amino-6-(1,2-dihydroxypropyl)-, (S-(R*,S*))-,6-Biopterin,Biopterin,D-threo-Biopterin,L-Biopterin,L-erythro-Biopterin,L-threo-Biopterin,2-Amino-6-(1,2-dihydroxypropyl)-4(1H)-pteridinone,Dictyopterin,Orinapterin,6 Biopterin,D threo Biopterin,L Biopterin,L erythro Biopterin,L threo Biopterin
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan

Related Publications

Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
November 1996, Chemical reviews,
Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
December 2002, Biochemical and biophysical research communications,
Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
December 2003, Biochemistry,
Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
September 1968, Genetics,
Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
June 1975, The Journal of biological chemistry,
Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
July 2015, Microbial cell factories,
Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
March 2007, Metabolic engineering,
Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
April 1972, The Biochemical journal,
Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
October 1971, Journal of bacteriology,
Hao Luo, and Lei Yang, and Se Hyeuk Kim, and Tune Wulff, and Adam M Feist, and Markus Herrgard, and Bernhard Ø Palsson
October 1970, Journal of bacteriology,
Copied contents to your clipboard!