Comparative permeability of canine visceral and parietal pleura. 1988

D K Payne, and G T Kinasewitz, and E Gonzalez
Department of Medicine, Louisiana State University Medical Center, Shreveport 71130-3932.

To determine the permeability of canine pleural mesothelium, visceral and intercostal parietal pleura from mongrel dogs was carefully stripped from the underlying tissue and mounted as a planar sheet in a Ussing-type chamber. The hydraulic conductivity (Lp) was determined from the rate of volume flux in response to hydrostatic pressure gradients applied to either the mucosal or serosal surface of the pleural membrane. The diffusional permeability (Pd) of radiolabeled water, sucrose, inulin, and albumin was determined under equilibrium conditions from the unidirectional tracer flux. The Lp of the visceral pleura was 0.39 +/- 0.032 (SE) X 10(-4) ml.s-1.cmH2O-1.cm-2 and that Lp of parietal pleura was 1.93 +/- 0.93 X 10(-4) ml.s-1.cmH2O-1.cm-2 (P less than 0.001). The Pd of the visceral pleura ranged from 12.21 +/- 0.45 X 10(-4) cm/s for 3H2O to 0.34 +/- 0.03 X 10(-4) cm/s for [3H]albumin. The Pd of the parietal pleura for water and sucrose was similar to that of the visceral membrane, whereas its Pd for the larger inulin and albumin molecules was greater than that of visceral pleura (P less than 0.01). A spontaneous potential difference could not be detected across either membrane. The relatively higher parietal pleural Lp and Pd for larger solutes is probably due to the presence of stomata in this membrane. These results indicate that both the parietal and the visceral pleura are extremely permeable tissues which offer little resistance to water and solute flux.

UI MeSH Term Description Entries
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D010994 Pleura The thin serous membrane enveloping the lungs (LUNG) and lining the THORACIC CAVITY. Pleura consist of two layers, the inner visceral pleura lying next to the pulmonary parenchyma and the outer parietal pleura. Between the two layers is the PLEURAL CAVITY which contains a thin film of liquid. Parietal Pleura,Visceral Pleura,Pleura, Parietal,Pleura, Visceral
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000418 Albumins Water-soluble proteins found in egg whites, blood, lymph, and other tissues and fluids. They coagulate upon heating. Albumin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose

Related Publications

D K Payne, and G T Kinasewitz, and E Gonzalez
July 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
D K Payne, and G T Kinasewitz, and E Gonzalez
August 1986, Journal of applied physiology (Bethesda, Md. : 1985),
D K Payne, and G T Kinasewitz, and E Gonzalez
February 1994, Journal of applied physiology (Bethesda, Md. : 1985),
D K Payne, and G T Kinasewitz, and E Gonzalez
January 1986, Annals of biomedical engineering,
D K Payne, and G T Kinasewitz, and E Gonzalez
August 1990, Journal of applied physiology (Bethesda, Md. : 1985),
D K Payne, and G T Kinasewitz, and E Gonzalez
December 2008, Respiratory physiology & neurobiology,
D K Payne, and G T Kinasewitz, and E Gonzalez
January 2007, Respiration; international review of thoracic diseases,
D K Payne, and G T Kinasewitz, and E Gonzalez
July 2009, The journal of physiological sciences : JPS,
D K Payne, and G T Kinasewitz, and E Gonzalez
January 1991, Journal of applied physiology (Bethesda, Md. : 1985),
D K Payne, and G T Kinasewitz, and E Gonzalez
February 2001, European journal of morphology,
Copied contents to your clipboard!