Receptors for ATP in rat sensory neurones: the structure-function relationship for ligands. 1988

O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
A.A. Bogomolets Institute of Physiology, Kiev, USSR.

1. The pharmacological properties of the ATP-activated conductance in isolated sensory neurones of the rat were investigated by use of voltage clamp and concentration clamp techniques. 2. Adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), cytidine 5'-triphosphate (CTP), cytidine 5'-diphosphate (CDP) and some derivatives activate these receptors, whereas adenosine 5'-monophosphate (AMP), cytidine 5'-monophosphate (CMP) and other naturally-occurring nucleotides are competitive blockers. 3. In the sequence of substances, adenosine 5'-(beta,gamma-methylene)-triphosphonate (APPCP), adenosine 5'-(beta,gamma-difluoromethylene)- triphosphonate (APPCF2P), adenosine 5'-(beta,gamma-dichloromethylene)-triphosphonate (APPCC12P) and adenosine 5'-(beta,gamma-dibromomethylene)triphosphonate (APPCBr2P), the properties of ligands depend on the radius of the atom linked to the carbon of the diphosphonate group. Thus, APPCP is an agonist, APPCF2P is a partial agonist, while dichloromethylene and dibromomethylene analogues of adenosine 5'-(beta,gamma-methylene)triphosphonate demonstrate features of competitive blockers. APPCC12P is the most effective blocker of ATP-receptors (inhibition constant Ki = 21 +/- 4 microM). An adenosyl or adenylyl radical, when connected to the terminal phosphate of ATP, converts the agonist into a partial agonist. 4. Two especially important parts of the ATP molecule are crucial for the interactions with receptors. They are: (1) the vicinity of C6 of the purine ring and (2) the polyphosphate chain. Some modifications in these regions of the molecule result in the transformation of an agonist into an antagonist.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D005260 Female Females
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
October 2003, The Journal of physiology,
O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
April 2000, British journal of anaesthesia,
O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
January 2001, Neuropharmacology,
O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
August 1986, The Journal of physiology,
O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
March 1988, Archives of histology and cytology,
O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
July 1996, British journal of pharmacology,
O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
January 1967, Zentralblatt fur Veterinarmedizin. Reihe A,
O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
June 1989, The Journal of physiology,
O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
January 2003, Methods in molecular medicine,
O A Krishtal, and S M Marchenko, and A G Obukhov, and T M Volkova
November 1995, British journal of pharmacology,
Copied contents to your clipboard!