Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. 2020

Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.

Glioblastoma multiforme (GBM) is a highly aggressive and devastating brain tumor characterized by poor prognosis and high rates of recurrence. Numerous therapeutic strategies and delivery systems are developed to prolong the survival time. They exhibit enhanced therapeutic effects in animal models, whereas few of them is applied in clinical trials. Taking into account the drug-resistance and high recurrence of GBM, combined-therapeutic strategies are exploited to maximize therapeutic efficacy. The combined therapies demonstrate superior results than those of single therapies against GBM. The co-therapeutic agents, the timing of therapeutic strategies and the delivery systems greatly affect the overall outcomes. Herein, the current advances in combined therapies for glioblastoma via systemic administration are exhibited in this review. And we will discuss the pros and cons of these combined-therapeutic strategies via nanotechnology, and provide the guidance for developing rational delivery systems to optimize treatments against GBM and other malignancies in central nervous system.

UI MeSH Term Description Entries
D006979 Hyperthermia, Induced Abnormally high temperature intentionally induced in living things regionally or whole body. It is most often induced by radiation (heat waves, infra-red), ultrasound, or drugs. Fever Therapy,Hyperthermia, Local,Hyperthermia, Therapeutic,Thermotherapy,Induced Hyperthermia,Therapeutic Hyperthermia,Therapy, Fever,Local Hyperthermia
D007167 Immunotherapy Manipulation of the host's immune system in treatment of disease. It includes both active and passive immunization as well as immunosuppressive therapy to prevent graft rejection. Immunotherapies
D009364 Neoplasm Recurrence, Local The local recurrence of a neoplasm following treatment. It arises from microscopic cells of the original neoplasm that have escaped therapeutic intervention and later become clinically visible at the original site. Local Neoplasm Recurrence,Local Neoplasm Recurrences,Locoregional Neoplasm Recurrence,Neoplasm Recurrence, Locoregional,Neoplasm Recurrences, Local,Recurrence, Local Neoplasm,Recurrence, Locoregional Neoplasm,Recurrences, Local Neoplasm,Locoregional Neoplasm Recurrences,Neoplasm Recurrences, Locoregional,Recurrences, Locoregional Neoplasm
D010789 Phototherapy Treatment of disease by exposure to light, especially by variously concentrated light rays or specific wavelengths. Blue Light Therapy,Blue-light Therapy,Light Therapy,Photoradiation Therapy,Red Light Phototherapy,Therapy, Photoradiation,Blue Light Therapies,Blue-light Therapies,Light Phototherapies, Red,Light Phototherapy, Red,Light Therapies,Light Therapies, Blue,Light Therapy, Blue,Photoradiation Therapies,Phototherapies,Phototherapies, Red Light,Phototherapy, Red Light,Red Light Phototherapies,Therapies, Blue Light,Therapies, Blue-light,Therapies, Light,Therapies, Photoradiation,Therapy, Blue Light,Therapy, Blue-light,Therapy, Light
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D003131 Combined Modality Therapy The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used. Multimodal Treatment,Therapy, Combined Modality,Combined Modality Therapies,Modality Therapies, Combined,Modality Therapy, Combined,Multimodal Treatments,Therapies, Combined Modality,Treatment, Multimodal,Treatments, Multimodal
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000971 Antineoplastic Combined Chemotherapy Protocols The use of two or more chemicals simultaneously or sequentially in the drug therapy of neoplasms. The drugs need not be in the same dosage form. Anticancer Drug Combinations,Antineoplastic Agents, Combined,Antineoplastic Chemotherapy Protocols,Antineoplastic Drug Combinations,Cancer Chemotherapy Protocols,Chemotherapy Protocols, Antineoplastic,Drug Combinations, Antineoplastic,Antineoplastic Combined Chemotherapy Regimens,Combined Antineoplastic Agents,Agent, Combined Antineoplastic,Agents, Combined Antineoplastic,Anticancer Drug Combination,Antineoplastic Agent, Combined,Antineoplastic Chemotherapy Protocol,Antineoplastic Drug Combination,Cancer Chemotherapy Protocol,Chemotherapy Protocol, Antineoplastic,Chemotherapy Protocol, Cancer,Chemotherapy Protocols, Cancer,Combinations, Antineoplastic Drug,Combined Antineoplastic Agent,Drug Combination, Anticancer,Drug Combination, Antineoplastic,Drug Combinations, Anticancer,Protocol, Antineoplastic Chemotherapy,Protocol, Cancer Chemotherapy,Protocols, Antineoplastic Chemotherapy,Protocols, Cancer Chemotherapy

Related Publications

Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
January 2023, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology,
Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
September 2018, Journal of translational internal medicine,
Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
January 2017, Frontiers in pharmacology,
Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
November 2014, EMBO molecular medicine,
Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
June 1981, South Dakota journal of medicine,
Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
January 1969, Minerva neurochirurgica,
Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
July 2015, Journal of neuro-oncology,
Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
May 2022, Neuroscience,
Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
August 2014, Expert review of anticancer therapy,
Jun Yang, and Zhuyan Shi, and Ruiyuan Liu, and Yanyue Wu, and Xin Zhang
July 2020, Expert opinion on therapeutic targets,
Copied contents to your clipboard!