Comparison between effects of caffeine and ryanodine on electromechanical coupling in myocardium of hibernating chipmunks: role of internal Ca stores. 1988

N Kondo
Mitsubishi-Kasei Institute of Life Sciences, Tokyo, Japan.

1. To clarify the cause of uncoupling of Ca influx through Ca channels and the contractility of the myocardium in hibernating chipmunks, the electromechanical effects of two different internal Ca store inhibitors, caffeine and ryanodine, and a cardiotonic agent, isoprenaline, were investigated in papillary muscles of hibernating animals. 2. Ryanodine (10(-6) M), an inhibitor of internal Ca release, abolished the contraction with a marked inhibition of the action potential plateau (APp). In such preparations, an increase in Ca influx induced by isoprenaline (5 x 10(-8) M) failed to augment the contraction, indicating uncoupling of Ca influx and contraction. 3. In ryanodine pretreated preparations, 10 mM caffeine produced an early phase of APp, but did not affect the contraction abolished by ryanodine, while a higher concentration of caffeine (25 mM) markedly increased the contraction with an augmentation of the electrical response. 4. In the absence of ryanodine, caffeine (5 mM) almost abolished the contraction with a greater inhibition of APp. In such preparations, isoprenaline greatly increased the contraction with an augmentation of the early phase of APp. 5. These effects were not significantly affected by additional application of ryanodine, but were inhibited by nifedipine, a Ca channel blocker. 6. These observations suggest that in cardiac muscles of hibernating animals, lack of the positive inotropic effect of isoprenaline may be attributed to a rapid and effective sequestration of increased cytoplasmic Ca through Ca influx by internal stores, probably by enhancement of their ability to take up Ca.

UI MeSH Term Description Entries
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005260 Female Females
D006605 Hibernation The dormant state in which some warm-blooded animal species pass the winter. It is characterized by narcosis and by sharp reduction in body temperature and metabolic activity and by a depression of vital signs. Hibernation, Artificial,Induced Hibernation,Artificial Hibernation,Artificial Hibernations,Hibernation, Induced,Hibernations,Induced Hibernations
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N Kondo
May 1986, The American journal of physiology,
N Kondo
June 1995, International journal of cardiology,
N Kondo
January 1995, Basic research in cardiology,
N Kondo
March 1980, Bollettino della Societa italiana di biologia sperimentale,
N Kondo
January 1962, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
N Kondo
January 1987, Farmakologiia i toksikologiia,
N Kondo
August 1981, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
Copied contents to your clipboard!