Feeding diets varying in forage proportion and particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial protein synthesis, digestibility, and milk production. 2020

Chun Li, and Karen A Beauchemin, and Wenzhu Yang
College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, China 028000.

Physically effective neutral detergent fiber (peNDF) content of dairy cow diets was modified by varying the theoretical chop length of alfalfa silage and forage:concentrate (F:C) ratio, and effects on nutrient intakes, ruminal fermentation, site and extent of digestion, microbial protein synthesis, and milk production were evaluated. Estimates of dietary peNDF contents were compared with recommendations, and predictions of ruminal pH from peNDF and the recently developed physically adjusted neutral detergent fiber (paNDF) system were compared with observed pH. The experiment was designed as a triple 4 × 4 Latin square using 12 mid-lactating dairy cows with 4 intact, 4 ruminally cannulated, and 4 ruminally and duodenally cannulated cows. Site and extent of digestion and microbial protein synthesis were measured in a single 4 × 4 Latin square. Treatments were a 2 × 2 factorial arrangement; 2 forage particle lengths (FPL) of alfalfa silage (short and long) were combined with low (35:65) and high (60:40) F:C ratios [dry matter (DM) basis]. The peNDF contents were determined by multiplying the proportion (DM basis) of total mixed ration retained on 2 (8 and 19 mm; peNDF8.0) or 3 (1.18, 8, and 19 mm; peNDF1.18) sieves of the Penn State Particle Separator by the neutral detergent fiber content of the diet. The dietary peNDF contents ranged from 10.7 to 17.5% for peNDF8.0 or from 23.1 to 28.2% for peNDF1.18. Interactions between F:C ratio and FPL content were few. Increasing peNDF content of diets by increasing F:C ratio decreased DM intake, milk yield, and milk protein yield, whereas apparent total-tract DM digestibility and milk efficiency improved. Increasing F:C ratio improved ruminal pH status but decreased total volatile fatty acid concentration and microbial protein synthesis. Increasing peNDF content of diets via dietary FPL increased mean ruminal pH, but did not affect DM intake, total-tract digestibility, or milk production. The results indicate that feeding dairy cows a low F:C diet helps increase DM intake, milk production, and microbial protein synthesis, but may adversely affect feed digestibility and milk efficiency due to increased risk of subacute ruminal acidosis. Increased FPL improved ruminal pH status, but had minimal effects on feed intake, ruminal fermentation, nutrient digestibility, and milk production. The results indicate a trade-off between reducing the risk of subacute ruminal acidosis and maximizing ruminal fermentation, feed digestibility, and milk production of dairy cows. The paNDF model showed improvement in the predictability of ruminal pH over the peNDF model, but the accuracy of predictions varied depending upon the diet and ruminal fermentation variables considered in the equations.

UI MeSH Term Description Entries
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004063 Digestion The process of breakdown of food for metabolism and use by the body.
D005260 Female Females
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000069196 Gastrointestinal Microbiome All of the microbial organisms that naturally exist within the GASTROINTESTINAL TRACT. Enteric Bacteria,Gastric Microbiome,Gastrointestinal Flora,Gastrointestinal Microbial Community,Gastrointestinal Microbiota,Gastrointestinal Microflora,Gut Flora,Gut Microbiome,Gut Microbiota,Gut Microflora,Intestinal Flora,Intestinal Microbiome,Intestinal Microbiota,Intestinal Microflora,Bacteria, Enteric,Flora, Gastrointestinal,Flora, Gut,Flora, Intestinal,Gastric Microbiomes,Gastrointestinal Microbial Communities,Gastrointestinal Microbiomes,Gastrointestinal Microbiotas,Gut Microbiomes,Gut Microbiotas,Intestinal Microbiomes,Intestinal Microbiotas,Microbial Community, Gastrointestinal,Microbiome, Gastric,Microbiome, Gastrointestinal,Microbiome, Gut,Microbiome, Intestinal,Microbiota, Gastrointestinal,Microbiota, Gut,Microbiota, Intestinal,Microflora, Gastrointestinal,Microflora, Gut,Microflora, Intestinal

Related Publications

Chun Li, and Karen A Beauchemin, and Wenzhu Yang
January 2008, Journal of dairy science,
Chun Li, and Karen A Beauchemin, and Wenzhu Yang
December 2018, Journal of animal physiology and animal nutrition,
Chun Li, and Karen A Beauchemin, and Wenzhu Yang
July 2014, Journal of dairy science,
Chun Li, and Karen A Beauchemin, and Wenzhu Yang
March 2013, Journal of dairy science,
Chun Li, and Karen A Beauchemin, and Wenzhu Yang
May 2011, Journal of dairy science,
Copied contents to your clipboard!