Experimental analysis of pulsatile flow characteristics in prosthetic aortic valve models with stenosis. 2020

Ruihang Zhang, and Yan Zhang
Department of Mechanical Engineering, North Dakota State University, Dept 2490, PO Box 6050, Fargo, ND 58103, USA.

Bioprosthetic valves are widely used for aortic valve replacements for patients with severe aortic diseases. However, tissue-engineered leaflets normally deteriorate over time due to calcification, leading to life-threatening conditions that would require re-operation. The hemodynamics induced by a prosthetic stenosis is complicated and not fully understood. This in vitro experimental study focuses on the fluid dynamics of two aortic valve models with different prosthetic stenosis conditions. An in vitro cardiovascular flow simulator was utilized to provide the pulsatile physiological flow conditions. Phase-locked particle image velocimetry (PIV) and high-frequency pressure sensors were employed to measure the flow fields and pressure waveforms. Pressure data were evaluated for the two models representing moderate and severe stenosis conditions, respectively. The severe prosthetic stenosis induced a prolonged ejection period and increased acceleration time ratio. PIV results suggest the severe prosthetic stenosis resulted in a two-fold increase in peak jet velocity and a three-fold increase in peak turbulence kinetic energy compared to the moderate stenosis case. The severe stenosis also caused rapid expansion of the jet downstream of the valve orifice and increased eccentricity of the jet flow. The maximum Reynolds shear stress in the severe stenosis case was found similar to the bileaflet mechanical valve reported by previous literature, which was below the risk threshold of blood cell damage but could potentially increase the risks of platelet activation and aggregation.

UI MeSH Term Description Entries
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011673 Pulsatile Flow Rhythmic, intermittent propagation of a fluid through a BLOOD VESSEL or piping system, in contrast to constant, smooth propagation, which produces laminar flow. Flow, Pulsating,Perfusion, Pulsatile,Flow, Pulsatile,Flows, Pulsatile,Flows, Pulsating,Perfusions, Pulsatile,Pulsatile Flows,Pulsatile Perfusion,Pulsatile Perfusions,Pulsating Flow,Pulsating Flows
D003251 Constriction, Pathologic The condition of an anatomical structure's being constricted beyond normal dimensions. Stenosis,Stricture,Constriction, Pathological,Pathologic Constriction,Constrictions, Pathologic,Pathologic Constrictions,Pathological Constriction,Stenoses,Strictures
D006350 Heart Valve Prosthesis A device that substitutes for a heart valve. It may be composed of biological material (BIOPROSTHESIS) and/or synthetic material. Prosthesis, Heart Valve,Cardiac Valve Prosthesis,Cardiac Valve Prostheses,Heart Valve Prostheses,Prostheses, Cardiac Valve,Prostheses, Heart Valve,Prosthesis, Cardiac Valve,Valve Prostheses, Cardiac,Valve Prostheses, Heart,Valve Prosthesis, Cardiac,Valve Prosthesis, Heart
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001021 Aortic Valve The valve between the left ventricle and the ascending aorta which prevents backflow into the left ventricle. Aortic Valves,Valve, Aortic,Valves, Aortic
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D033081 Shear Strength The internal resistance of a material to moving some parts of it parallel to a fixed plane, in contrast to stretching (TENSILE STRENGTH) or compression (COMPRESSIVE STRENGTH). Ionic crystals are brittle because, when subjected to shear, ions of the same charge are brought next to each other, which causes repulsion. Strength, Shear

Related Publications

Ruihang Zhang, and Yan Zhang
September 1978, Circulation,
Ruihang Zhang, and Yan Zhang
January 1971, Scandinavian journal of thoracic and cardiovascular surgery,
Ruihang Zhang, and Yan Zhang
January 2002, Journal of cardiac surgery,
Ruihang Zhang, and Yan Zhang
October 1958, The Journal of thoracic surgery,
Ruihang Zhang, and Yan Zhang
January 1980, Transactions - American Society for Artificial Internal Organs,
Ruihang Zhang, and Yan Zhang
December 2017, EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology,
Ruihang Zhang, and Yan Zhang
April 2003, Journal of the American College of Cardiology,
Ruihang Zhang, and Yan Zhang
December 2010, Nature reviews. Cardiology,
Copied contents to your clipboard!