Respiration supported nitrogenase activity of isolated Rhizobium meliloti bacteroids. 1988

R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
Plant Research Centre, Agriculture Canada, Ottawa, Ontario.

Bacteroids having a high level of respiration-supported nitrogenase activity were isolated from nitrogen-fixing alfalfa root nodules. Gentle maceration under anaerobic conditions in the presence of sodium succinate and a fatty acid scavenging agent were employed in this method. A large proportion of isolated bacteroids retained a triple membrane structure as shown by transmission electron microscopy. Dicarboxylic acids of the TCA cycle (malate, fumarate, succinate), but not glutamate or aspartate, supported sufficient respiratory activity to supply the nitrogenase system with ATP and reducing equivalents and to protect the nitrogenase system from inactivation by 4% oxygen over a period of 20-30 min. Sugars did not support nitrogenase activity in intact bacteroids. The properties of the isolated bacteroids were ascribed to minimal damage to the cytoplasmic membrane and peribacteroidal membrane during isolation. With succinate as substrate and oxygen as terminal electron acceptor, initial nitrogenase activity was determined at 4% oxygen in the gas phase of the assay system employed. At this oxygen concentration, the sustained rate of acetylene reduction by respiring bacteroids was linear up to 30 min. Bacteroid activity declined rapidly with time of exposure to oxygen above 4% in the gas phase. The optimum temperature range for this activity was 10-20 degrees C. Nitrogenase activity was measurable at incubation temperatures below 10 degrees C under 4% oxygen. Functionally intact bacteroids had little nitrogenase activity under anaerobic conditions in the presence of an external source of ATP and reductant. Treatment of the bacteroids with chlorpromazine eliminated respiration-supported activity and rendered the bacteroid cell membrane permeable to external ATP. Bacteroids treated with chlorpromazine had high acetylene reducing activity with external ATP and dithionite in the absence of oxygen.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007887 Fabaceae The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family. Afzelia,Amorpha,Andira,Baptisia,Callerya,Ceratonia,Clathrotropis,Colophospermum,Copaifera,Delonix,Euchresta,Guibourtia,Legumes,Machaerium,Pithecolobium,Stryphnodendron,Leguminosae,Pea Family,Pithecellobium,Tachigalia,Families, Pea,Family, Pea,Legume,Pea Families
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D002746 Chlorpromazine The prototypical phenothiazine antipsychotic drug. Like the other drugs in this class chlorpromazine's antipsychotic actions are thought to be due to long-term adaptation by the brain to blocking DOPAMINE RECEPTORS. Chlorpromazine has several other actions and therapeutic uses, including as an antiemetic and in the treatment of intractable hiccup. Aminazine,Chlorazine,Chlordelazine,Chlorpromazine Hydrochloride,Contomin,Fenactil,Largactil,Propaphenin,Thorazine,Hydrochloride, Chlorpromazine
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.

Related Publications

R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
August 1996, Journal of bacteriology,
R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
January 1978, Biology bulletin of the Academy of Sciences of the USSR. Akademiia nauk SSSR,
R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
January 1979, Journal of bacteriology,
R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
September 1980, Journal of bacteriology,
R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
October 1975, Plant physiology,
R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
March 1970, Biochemical and biophysical research communications,
R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
March 1979, Canadian journal of microbiology,
R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
January 1990, Journal of general microbiology,
R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
January 1978, Mikrobiologiia,
R W Miller, and D G McRae, and A Al-Jobore, and W B Berndt
February 1983, Nature,
Copied contents to your clipboard!