We have previously shown that feeding mice immediately following training enhances memory retention and that one of the gastrointestinal hormones released during a meal, cholecystokinin, also enhances retention after peripheral administration. In the studies reported here we demonstrate that another gastrointestinal peptide, gastrin-releasing peptide (GRP), enhances retention after peripheral administration, as does its amphibian counterpart, bombesin. GRP had the same effect as the intact peptide, while GRP was ineffective at enhancing retention. The dose-response curves showed a characteristic inverted U-shape with high doses of both GRP and bombesin being amnestic. The effect of both peptides was time-dependent and both reversed amnesia induced by the anticholinergic, scopolamine. I.c.v. administration of the peptides required higher doses to produce an effect on memory retention, suggesting that the effect was mediated predominantly through a peripheral mechanism. Doses of the peptides that enhanced memory retention after peripheral administration failed to increase serum glucose, suggesting that glucose modulation was not the mechanism by which GRP and bombesin modulate memory processing. Vagotomy inhibited the memory-enhancing effects of both GRP and bombesin, suggesting that these peptides produced their effect by stimulating ascending vagal pathways. These studies, together with our previous study with cholecystokinin, suggest the existence of a gastrointestinal hormonal system, which is activated by the passage of food through the intestine, that enhances memory retention.