Evidence of multifactorial mechanisms in an adriamycin-resistant HL-60 promyelocytic leukemia cell line. 1988

N S Burres, and M T Myers, and A C Sartorelli
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510.

HL-60/AR leukemia cells, which were 60-fold resistant to the growth inhibitory activity of adriamycin, remained sensitive to the antiproliferative and differentiation-inducing activities of aclacinomycin A. The replication of HL-60/AR and of adriamycin sensitive parental HL-60 cells was inhibited by greater than 80% by 30 nM aclacinomycin A and the majority of cells (about 60 to 70%) of each line underwent granulocytic differentiation when treated with this agent, as assessed by the reduction of nitroblue tetrazolium. Measurement of the initial rates of uptake of daunorubicin and steady-state levels of adriamycin in sensitive and resistant lines indicated that transport differences do not fully account for the insensitivity of HL-60/AR cells to these anthracyclines. Furthermore, 30-fold greater levels of cell-associated adriamycin were required in HL-60/AR cells for toxic effects equivalent to those occurring in parental HL-60 cells. Analysis of DNA histograms of adriamycin treated HL-60 cells indicated that cell-cycle progression was blocked in G2-M, while this antibiotic blocked progression of resistant HL-60/AR cells in the S phase. These results suggest that, in addition to alterations in membrane permeability, differential sensitivity of multiple biochemical targets may be important in the toxicity and the development of resistance to anthracyclines. Furthermore, the finding that HL-60/AR cells do not exhibit cross-resistance to aclacinomycin A indicates that this oligosaccharide-containing anthracycline may have utility in the treatment of adriamycin resistant neoplasms.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003630 Daunorubicin A very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of LEUKEMIA and other NEOPLASMS. Daunomycin,Rubidomycin,Rubomycin,Cerubidine,Dauno-Rubidomycine,Daunoblastin,Daunoblastine,Daunorubicin Hydrochloride,NSC-82151,Dauno Rubidomycine,Hydrochloride, Daunorubicin,NSC 82151,NSC82151
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

N S Burres, and M T Myers, and A C Sartorelli
June 2005, Zhonghua zhong liu za zhi [Chinese journal of oncology],
N S Burres, and M T Myers, and A C Sartorelli
January 1981, Biochemical and biophysical research communications,
N S Burres, and M T Myers, and A C Sartorelli
July 1984, The Journal of experimental medicine,
N S Burres, and M T Myers, and A C Sartorelli
November 1991, Biochemical and biophysical research communications,
N S Burres, and M T Myers, and A C Sartorelli
September 1999, The Tohoku journal of experimental medicine,
N S Burres, and M T Myers, and A C Sartorelli
September 2017, Emerging microbes & infections,
N S Burres, and M T Myers, and A C Sartorelli
November 2010, Free radical research,
N S Burres, and M T Myers, and A C Sartorelli
January 1983, Haematology and blood transfusion,
N S Burres, and M T Myers, and A C Sartorelli
January 1991, Leukemia research,
N S Burres, and M T Myers, and A C Sartorelli
April 1990, FEBS letters,
Copied contents to your clipboard!