Impurities identification and quantification for calcitonin salmon by liquid chromatography-high resolution mass spectrometry. 2020

Peize Wu, and Ming Li, and Ying Kan, and Xue Wu, and Hongmei Li
Division of Chemical Metrology & Analytical Science, National Institute of Metrology, Beijing 100029, PR China.

Calcitonin salmon is an important peptide pharmaceutical, which is mainly used for the treatment of osteoporosis and hypercalcemia. Structurally related peptide impurities in a peptide pharmaceutical probably have side effect or even toxicity, thus needs to be carefully characterized according to pharmacopoeia. With the improvement of analytical techniques, liquid chromatography-high resolution mass spectrometry (LC-HRMS) has become a pivotal technique for the identification and quantification of structurally related peptide impurities in peptide materials. In this study, an LC-HRMS-based method has been developed for the identification and quantification of structurally related peptide impurities in calcitonin salmon material. With this method, 7 peptide impurities (> 1 mg/g) in United States Pharmacopoeia (USP) reference standard and 9 peptide impurities (> 1 mg/g) in European Pharmacopoeia (EP) reference standard were identified and accurately quantified. Besides the peptide impurities reported by USP and EP, several new impurities such as [7-Dehydroalanine] calcitonin salmon, triple-sulfate-calcitonin salmon, [26-Proline] calcitonin salmon, [14-Glutamic acid] calcitonin salmon, [20-Glutamic acid] calcitonin salmon, [26-Aspartic acid] calcitonin salmon, calcitonin salmon acid were observed in the reference standard materials studied. The total mass fractions of all structurally related peptide impurities in calcitonin salmon study materials were estimated to be 57.4 mg/g for USP and 46.3 mg/g for EP with associated expended uncertainties at a 95 % confidence level of 5.2 mg/g (k = 2) and 3.1 mg/g (k = 2), respectively.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D002116 Calcitonin A peptide hormone that lowers calcium concentration in the blood. In humans, it is released by thyroid cells and acts to decrease the formation and absorptive activity of osteoclasts. Its role in regulating plasma calcium is much greater in children and in certain diseases than in normal adults. Thyrocalcitonin,Calcitonin(1-32),Calcitrin,Ciba 47175-BA,Eel Calcitonin,Calcitonin, Eel,Ciba 47175 BA,Ciba 47175BA
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004340 Drug Contamination The presence of organisms, or any foreign material that makes a drug preparation impure. Drug Adulteration,Drug Contamination, Chemical,Drug Contamination, Microbial,Drug Contamination, Physical,Drug Impurity,Adulteration, Drug,Chemical Drug Contamination,Chemical Drug Contaminations,Contamination, Chemical Drug,Contamination, Drug,Contamination, Microbial Drug,Contamination, Physical Drug,Contaminations, Chemical Drug,Contaminations, Microbial Drug,Contaminations, Physical Drug,Drug Adulterations,Drug Contaminations,Drug Contaminations, Chemical,Drug Contaminations, Microbial,Drug Contaminations, Physical,Drug Impurities,Impurity, Drug,Microbial Drug Contamination,Microbial Drug Contaminations,Physical Drug Contamination,Physical Drug Contaminations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass

Related Publications

Peize Wu, and Ming Li, and Ying Kan, and Xue Wu, and Hongmei Li
January 2022, Methods in molecular biology (Clifton, N.J.),
Peize Wu, and Ming Li, and Ying Kan, and Xue Wu, and Hongmei Li
December 2009, Journal of pharmaceutical and biomedical analysis,
Peize Wu, and Ming Li, and Ying Kan, and Xue Wu, and Hongmei Li
March 2021, Analytical and bioanalytical chemistry,
Peize Wu, and Ming Li, and Ying Kan, and Xue Wu, and Hongmei Li
December 2014, Journal of agricultural and food chemistry,
Peize Wu, and Ming Li, and Ying Kan, and Xue Wu, and Hongmei Li
January 1996, Rapid communications in mass spectrometry : RCM,
Peize Wu, and Ming Li, and Ying Kan, and Xue Wu, and Hongmei Li
November 2022, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Peize Wu, and Ming Li, and Ying Kan, and Xue Wu, and Hongmei Li
January 2023, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!