Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF. 1988

J J Guinan, and M L Gifford
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge.

In order to study the effects of efferent activity, olivocochlear efferents were stimulated with an electrode in the fourth ventricle at the decussation of the crossed olivocochlear bundle (midline-OCB stimulation) or with an electrode at the brainstem origin of medial efferents (MOC stimulation). Tuning curves, or similar measures of threshold, were obtained from auditory-nerve fibers in the presence or absence of efferent stimulation. Efferent stimulation raised the thresholds of fibers for tones at the characteristic frequency (CF) by an amount which varied with the spontaneous rate (SR) of the auditory-nerve fiber. On the average, high-SR fibers had the smallest threshold shifts, and low-SR fibers had the largest threshold shifts. The distribution of threshold shifts as a function of CF peaked at CFs of 3-8 kHz for high-SR and medium-SR fibers but appeared to peak at higher CFs for low-SR fibers. Within the high-SR or medium-SR groups, the fibers with the lowest thresholds had the largest threshold shifts. Efferent stimulation decreased the Q20 of the tuning curves from most fibers (i.e. it made the tuning curves wider), but increased the Q20 from some fibers with CFs below 2 kHz. For fibers with CFs above 4 kHz, efferent stimulation shifted the tuning-curve tails to higher sound levels by about 1 dB on the average. The qualitative patterns of the effects due to midline-OCB stimulation or to MOC stimulation were similar. The distribution of high-SR threshold shifts vs. CF appears to be displaced apically in the cochlea compared to the distribution of MOC endings on outer hair cells. This can be understood in terms of efferent activity depressing basilar membrane motion and affecting regions at, and apical to, the activated efferent synapses. To explain the low-SR threshold shifts, an additional way in which efferent activity inhibits responses appears to be required. The data are consistent with one function of the medial efferents being to raise the thresholds of auditory-nerve fibers and thereby adjust the effective range of the auditory system.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009476 Neurons, Efferent Neurons which send impulses peripherally to activate muscles or secretory cells. Efferent Neurons,Efferent Neuron,Neuron, Efferent
D009847 Olivary Nucleus A brainstem nuclear complex. in the hindbrain, also referred to as the olivary body. The olivary nuclear complex is a part of the MEDULLA OBLONGATA and the PONTINE TEGMENTUM. It is involved with motor control and is a major source of sensory input to the CEREBELLUM. Basal Nucleus, Olivary,Nucleus Basalis, Olivary,Olivary Body,Olivary Complex,Olivary Nuclei,Complex, Olivary,Nucleus, Olivary,Nucleus, Olivary Basal,Olivary Basal Nucleus,Olivary Bodies
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000159 Vestibulocochlear Nerve The 8th cranial nerve. The vestibulocochlear nerve has a cochlear part (COCHLEAR NERVE) which is concerned with hearing and a vestibular part (VESTIBULAR NERVE) which mediates the sense of balance and head position. The fibers of the cochlear nerve originate from neurons of the SPIRAL GANGLION and project to the cochlear nuclei (COCHLEAR NUCLEUS). The fibers of the vestibular nerve arise from neurons of Scarpa's ganglion and project to the VESTIBULAR NUCLEI. Cranial Nerve VIII,Eighth Cranial Nerve,Cochleovestibular Nerve,Statoacoustic Nerve,Cochleovestibular Nerves,Cranial Nerve VIIIs,Cranial Nerve, Eighth,Cranial Nerves, Eighth,Eighth Cranial Nerves,Nerve VIIIs, Cranial,Nerve, Cochleovestibular,Nerve, Eighth Cranial,Nerve, Statoacoustic,Nerve, Vestibulocochlear,Nerves, Cochleovestibular,Nerves, Eighth Cranial,Nerves, Statoacoustic,Nerves, Vestibulocochlear,Statoacoustic Nerves,VIIIs, Cranial Nerve,Vestibulocochlear Nerves
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J J Guinan, and M L Gifford
June 1978, Sensory processes,
J J Guinan, and M L Gifford
October 1970, The Journal of the Acoustical Society of America,
J J Guinan, and M L Gifford
March 1974, The Journal of the Acoustical Society of America,
J J Guinan, and M L Gifford
December 1994, Hearing research,
J J Guinan, and M L Gifford
December 1967, The Journal of the Acoustical Society of America,
Copied contents to your clipboard!