The effects of scopolamine and traumatic brain injury on central cholinergic neurons. 1988

A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond.

This study examined the effects of scopolamine and fluid percussion traumatic brain injury (TBI) on the activity of cholinergic neurons in specific areas of the rat brain 12 min, 4 h, and 24 h after injury. Acetylcholine (ACh) turnover, used as an index of cholinergic neuronal activity, was determined using gas chromatography-mass fragmentography. Scopolamine pretreatment prevented significant increases in dorsal pontine ACh turnover at 12 min and 4 h after TBI, suggesting that the drug's protective actions against the neurologic deficits following TBI may involve blockade of cholinergic neuronal activation as well as postsynaptic muscarinic blockade. The responses of thalamic, hippocampal, and amygdaloid cholinergic neurons to TBI did not differ substantially in scopolamine-pretreated rats from those studied previously in untreated fluid-percussion-injured rats. However, cholinergic neurons in the cingulate-frontal cortex of rats receiving TBI did respond in a different manner to scopolamine than those of rats receiving sham injury, suggesting a disruption of regulation of cortical cholinergic neurons following this model of TBI.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012601 Scopolamine An alkaloid from SOLANACEAE, especially DATURA and SCOPOLIA. Scopolamine and its quaternary derivatives act as antimuscarinics like ATROPINE, but may have more central nervous system effects. Its many uses include an anesthetic premedication, the treatment of URINARY INCONTINENCE and MOTION SICKNESS, an antispasmodic, and a mydriatic and cycloplegic. Hyoscine,Scopolamine Hydrobromide,Boro-Scopol,Isopto Hyoscine,Kwells,Scoburen,Scopace,Scopoderm TTS,Scopolamine Cooper,Transderm Scop,Transderm-V,Travacalm HO,Vorigeno,Boro Scopol,Transderm V
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
November 1989, Brain research,
A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
September 1983, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
August 1996, Journal of neurotrauma,
A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
January 1990, Progress in brain research,
A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
January 1992, Brain research,
A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
May 1992, Journal of neurotrauma,
A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
August 2020, Cell death & disease,
A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
July 1993, Brain research,
A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
January 1998, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
A Saija, and S E Robinson, and B G Lyeth, and C E Dixon, and T Yamamoto, and G L Clifton, and R L Hayes
November 1992, Neuropharmacology,
Copied contents to your clipboard!