Haematocrit distribution in rabbit tenuissimus muscle. 1988

K Ley, and L Lindbom, and K E Arfors
Pharmacia Experimental Medicine, La Jolla, CA 92037.

Low values of mean capillary haematocrit have been reported in many tissues including skeletal muscle. The present study was undertaken to analyse haematocrit distribution in the transverse and terminal arterioles, capillaries and venules of the rabbit tenuissimus muscle preparation. Tube haematocrit, i.e. the volume fraction of red cells, in muscle capillaries (n = 85) was found to be 39% of systematic haematocrit Hsys. In part, this haematocrit reduction is due to the Fahraeus effect. Corresponding capillary discharge haematocrit HD was 56% of Hsys. Tenuissimus muscle capillaries are fed by terminal arterioles originating from transverse arterioles. The latter extend into and supply adjacent connective tissue septa in addition to the muscle tissue proper. In transverse arterioles leaving the muscle to enter the connective tissue, HD was found to be 127% of Hsys (n = 18), and in collecting venules at the muscle edge HD was 129% of Hsys (n = 18). These findings indicate that the connective tissue microcirculation represents a functional red-cell shunt in resting tenuissimus muscle. Since only about 20% of the inflow to the preparation passes through the connective tissue, this shunting is not sufficient to satisfy conservation of red-cell mass. In addition, it is likely that the observed low capillary haematocrit is in part due to a positive correlation between blood-flow velocity and HD in capillaries originating from individual terminal arterioles. This phenomenon is called the network Fahraeus effect.

UI MeSH Term Description Entries
D008297 Male Males
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D003238 Connective Tissue Tissue that supports and binds other tissues. It consists of CONNECTIVE TISSUE CELLS embedded in a large amount of EXTRACELLULAR MATRIX. Connective Tissues,Tissue, Connective,Tissues, Connective
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole

Related Publications

K Ley, and L Lindbom, and K E Arfors
January 1976, Upsala journal of medical sciences,
K Ley, and L Lindbom, and K E Arfors
January 1989, The American journal of physiology,
K Ley, and L Lindbom, and K E Arfors
January 1986, International journal of microcirculation, clinical and experimental,
K Ley, and L Lindbom, and K E Arfors
January 1987, Microvascular research,
K Ley, and L Lindbom, and K E Arfors
January 1995, International journal of microcirculation, clinical and experimental,
K Ley, and L Lindbom, and K E Arfors
April 1988, The American journal of physiology,
K Ley, and L Lindbom, and K E Arfors
September 1988, Microvascular research,
K Ley, and L Lindbom, and K E Arfors
October 1995, The American journal of physiology,
Copied contents to your clipboard!