Recurrent seizures cause immature brain injury and changes in GABA a receptor α1 and γ2 subunits. 2020

Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
Department of Neurology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China; Department of Pediatrics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China.

Recurrent seizures can cause brain damage and affect the cognitive outcome, particularly in developing children. We aimed to determine the effects of recurrent seizures on the expression of gamma-aminobutyric acid A receptor (GABAAR) α1 and γ2 subunit and neurodevelopment in immature rats. The role of the GABAAR agonist clonazepam and antagonist/partial agonist flumazenil in seizure-induced brain injury was also studied. Recurrent seizures (RS) were induced by flurothyl inhalation in immature rats. Clonazepam (CZP) and flumazenil (FMZ) were administered to modulate GABAAR subunit expression in different experimental groups. Neurobehavioral changes and GABAAR α1 and γ2 subunit expression were studied. Inhalation of flurothyl for five days triggered RS and caused reflex delay, inability to adapt to new environments in adulthood, and deficits in long-term learning and memory ability in rats. Down-regulation of GABAAR α1 and γ2 subunits occurred after seizure onset and persisted for a long time. CZP treatment decreased the expression of GABAAR α1 and γ2 subunits and delayed neurodevelopment of the immature rats, whereas FMZ did not show any significant effects. Changes in GABAAR α1 and γ2 subunit expression and neurodevelopment were related to recurrent seizures and administration of CZP. Thus, GABAAR α1 and γ2 subunits likely play a significant role in the development of immature rats with RS and provide a novel target for therapeutic intervention.

UI MeSH Term Description Entries
D008297 Male Males
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D004829 Epilepsy, Generalized Recurrent conditions characterized by epileptic seizures which arise diffusely and simultaneously from both hemispheres of the brain. Classification is generally based upon motor manifestations of the seizure (e.g., convulsive, nonconvulsive, akinetic, atonic, etc.) or etiology (e.g., idiopathic, cryptogenic, and symptomatic). (From Mayo Clin Proc, 1996 Apr;71(4):405-14) Convulsive Generalized Seizure Disorder,Epilepsy, Tonic,Generalized Nonconvulsive Seizure Disorder,Seizure Disorder, Generalized,Convulsive Seizure Disorder, Generalized,Epilepsy, Akinetic,Epilepsy, Atonic,Generalized Convulsive Epilepsy,Generalized Nonconvulsive Epilepsy,Generalized Onset Seizure Disorder,Generalized Seizure Disorder, Convulsive,Generalized Seizure Disorder, Nonconvulsive,Nonconvulsive Generalized Seizure Disorder,Nonconvulsive Seizure Disorder, Generalized,Seizure Disorder, Convulsive, Generalized,Seizure Disorder, Generalized Nonconvulsive,Seizure Disorder, Generalized Onset,Seizure Disorder, Generalized, Convulsive,Seizure Disorder, Nonconvulsive Generalized,Symptomatic Generalized Epilepsy,Akinetic Epilepsies,Akinetic Epilepsy,Atonic Epilepsies,Atonic Epilepsy,Convulsive Epilepsies, Generalized,Convulsive Epilepsy, Generalized,Epilepsies, Akinetic,Epilepsies, Atonic,Epilepsies, Generalized,Epilepsies, Generalized Convulsive,Epilepsies, Tonic,Epilepsy, Generalized Convulsive,Epilepsy, Generalized Nonconvulsive,Epilepsy, Symptomatic Generalized,Generalized Convulsive Epilepsies,Generalized Epilepsies,Generalized Epilepsy,Generalized Epilepsy, Symptomatic,Generalized Seizure Disorder,Generalized Seizure Disorders,Nonconvulsive Epilepsy, Generalized,Seizure Disorders, Generalized,Tonic Epilepsies,Tonic Epilepsy
D005260 Female Females
D005481 Flurothyl A convulsant primarily used in experimental animals. It was formerly used to induce convulsions as a alternative to electroshock therapy. Fluorothyl,Flurotyl,Indoklon
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
August 2012, Molecular pharmacology,
Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
March 2015, Neurology,
Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
January 2011, Developmental neuroscience,
Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
November 2001, Neuroscience letters,
Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
March 2007, Cellular and molecular neurobiology,
Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
January 2011, PloS one,
Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
October 2006, Epilepsia,
Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
January 2017, Developmental neuroscience,
Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
July 2017, Journal of chemical neuroanatomy,
Xiao-Jun Xi, and Ji-Hong Tang, and Bing-Bing Zhang, and Xiao-Yan Shi, and Jun Feng, and Xiao-Yue Hu, and Yu Wan, and Cheng Zhou
July 2006, Zhonghua er ke za zhi = Chinese journal of pediatrics,
Copied contents to your clipboard!