Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves. 2020

M N Chang, and J Y Wei, and L Y Hao, and F T Ma, and H Y Li, and S G Zhao, and P Sun
State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.

Neonatal diarrhea in dairy calves causes huge economic and productivity losses in the dairy industry. Zinc is an effective anti-diarrheal agent, but high doses may pose a threat to the environment. Therefore, we aimed to evaluate the effects of low-dose zinc supplementation on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn Holstein dairy calves. Thirty newborn calves were allocated to either a control group (without extra zinc supplementation), or groups supplemented with either 104 mg of zinc oxide (ZnO, equivalent to 80 mg of zinc/d) or 457 mg of zinc methionine (Zn-Met, equivalent to 80 mg of zinc/d) and studied them for 14 d. The rectal contents were sampled on d 1, 3, 7, and 14, and blood samples were collected at the end of the study. Supplementation with ZnO reduced the incidence of diarrhea during the first 3 d of life, and increased serum IgG and IgM concentrations. The Zn-Met supplementation increased growth performance and reduced the incidence of diarrhea during the first 14 d after birth. The results of fecal microbiota analysis showed that Firmicutes and Proteobacteria were the predominant phyla, and Escherichia and Bacteroides were the dominant genera in the recta of the calves. As the calves grew older, rectal microbial diversity and composition significantly evolved. In addition, dietary supplementation with ZnO reduced the relative abundance of Proteobacteria in 1-d-old calves, and increased that of Bacteroidetes, Lactobacillus, and Faecalibacterium in 7-d-old calves, compared with the control group. Supplementation with Zn-Met increased the relative abundance of the phylum Actinobacteria and the genera Faecalibacterium and Collinsella on d 7, and that of the genus Ruminococcus after 2 wk, compared with the control group. Thus, the rectal microbial composition was not affected by zinc supplementation but significantly evolved during the calves' early life. Zinc supplementation reduced the incidence of diarrhea in young calves. In view of their differing effects, we recommend ZnO supplementation for dairy calves during their first 3 d of life and Zn-Met supplementation for the subsequent period. These findings suggest that zinc supplementation may be an alternative to antibacterial agents for the treatment of newborn calf diarrhea.

UI MeSH Term Description Entries
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002418 Cattle Diseases Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus. Bovine Diseases,Bovine Disease,Cattle Disease,Disease, Bovine,Disease, Cattle,Diseases, Bovine,Diseases, Cattle
D003967 Diarrhea An increased liquidity or decreased consistency of FECES, such as running stool. Fecal consistency is related to the ratio of water-holding capacity of insoluble solids to total water, rather than the amount of water present. Diarrhea is not hyperdefecation or increased fecal weight. Diarrheas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
D019587 Dietary Supplements Products in capsule, tablet or liquid form that provide dietary ingredients, and that are intended to be taken by mouth to increase the intake of nutrients. Dietary supplements can include macronutrients, such as proteins, carbohydrates, and fats; and/or MICRONUTRIENTS, such as VITAMINS; MINERALS; and PHYTOCHEMICALS. Food Supplements,Neutraceuticals,Dietary Supplementations,Food Supplementations,Herbal Supplements,Nutraceuticals,Nutriceuticals,Dietary Supplement,Food Supplement,Herbal Supplement,Neutraceutical,Nutraceutical,Nutriceutical,Supplement, Food,Supplement, Herbal,Supplementations, Dietary,Supplements, Dietary,Supplements, Food,Supplements, Herbal
D064307 Microbiota The full collection of microbes (bacteria, fungi, virus, etc.) that naturally exist within a particular biological niche such as an organism, soil, a body of water, etc. Human Microbiome,Microbiome,Microbiome, Human,Microbial Community,Microbial Community Composition,Microbial Community Structure,Community Composition, Microbial,Community Structure, Microbial,Community, Microbial,Composition, Microbial Community,Human Microbiomes,Microbial Communities,Microbial Community Compositions,Microbial Community Structures,Microbiomes,Microbiotas

Related Publications

M N Chang, and J Y Wei, and L Y Hao, and F T Ma, and H Y Li, and S G Zhao, and P Sun
August 2023, Animals : an open access journal from MDPI,
M N Chang, and J Y Wei, and L Y Hao, and F T Ma, and H Y Li, and S G Zhao, and P Sun
January 2021, Frontiers in microbiology,
M N Chang, and J Y Wei, and L Y Hao, and F T Ma, and H Y Li, and S G Zhao, and P Sun
January 2022, Frontiers in veterinary science,
M N Chang, and J Y Wei, and L Y Hao, and F T Ma, and H Y Li, and S G Zhao, and P Sun
October 2015, Journal of dairy science,
M N Chang, and J Y Wei, and L Y Hao, and F T Ma, and H Y Li, and S G Zhao, and P Sun
May 1985, Journal of dairy science,
M N Chang, and J Y Wei, and L Y Hao, and F T Ma, and H Y Li, and S G Zhao, and P Sun
November 2004, Journal of dairy science,
M N Chang, and J Y Wei, and L Y Hao, and F T Ma, and H Y Li, and S G Zhao, and P Sun
January 2022, Animals : an open access journal from MDPI,
M N Chang, and J Y Wei, and L Y Hao, and F T Ma, and H Y Li, and S G Zhao, and P Sun
June 2020, Research in veterinary science,
M N Chang, and J Y Wei, and L Y Hao, and F T Ma, and H Y Li, and S G Zhao, and P Sun
December 2012, Journal of dairy science,
Copied contents to your clipboard!