Multicompartment analysis of blood flow and tissue perfusion employing D2O as a freely diffusible tracer: a novel deuterium NMR technique demonstrated via application with murine RIF-1 tumors. 1988

S G Kim, and J J Ackerman
Department of Chemistry, Washington University, St. Louis, Missouri 63130.

Deuterium NMR is employed in concert with multicompartment kinetic analysis for measurement of tissue blood flow and perfusion through a bolus administration of D2O as a freely diffusible tracer. The traditional single-compartment and two-compartment in-parallel flow models with no tracer recirculation are briefly discussed. The two-compartment in-series flow model with recirculation is developed to account for reflow of the stable (slowly excreted) deuterium tracer. With this model a monoexponential tracer washout curve is predicted. The rate of blood flow and tissue perfusion is readily extracted by three-parameter monoexponential analysis of the residue decay curve. A three-compartment model with recirculation, incorporating one compartment in-series with two compartments in-parallel, is developed for analysis of biexponential tracer washout curves. With this model the flow rates through the two in-parallel compartments (i.e., fast and slow) and the volume fractions of these two compartments are obtained by five-parameter biexponential analysis of the residue decay curve. Application of these multicompartment tracer-recirculation flow models is demonstrated with in situ determinations of murine RIF-1 tumor blood flow and tissue perfusion. The blood flow rates determined by deuterium NMR and analyzed by the multicompartment flow models agree well with those determined by others using radiolabels. A companion article (S.-G. Kim and J.J.H. Ackerman, Cancer Res. 48, 3449-3453, 1988) discusses in more depth the practical aspects of applying these multicompartment models to tumor blood flow measurement.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D003903 Deuterium The stable isotope of hydrogen. It has one neutron and one proton in the nucleus. Deuterons,Hydrogen-2,Hydrogen 2
D005260 Female Females
D005354 Fibrosarcoma A sarcoma derived from deep fibrous tissue, characterized by bundles of immature proliferating fibroblasts with variable collagen formation, which tends to invade locally and metastasize by the bloodstream. (Stedman, 25th ed) Fibrosarcomas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

S G Kim, and J J Ackerman
June 1987, Proceedings of the National Academy of Sciences of the United States of America,
S G Kim, and J J Ackerman
June 1991, Magnetic resonance in medicine,
S G Kim, and J J Ackerman
May 1995, Magnetic resonance in medicine,
S G Kim, and J J Ackerman
November 1991, Magnetic resonance in medicine,
Copied contents to your clipboard!