Role of the 30S ribosomal subunit, initiation factors, and specific ion concentration in barotolerant protein synthesis in Pseudomonas bathycetes. 1977

J V Landau, and W P Smith, and D H Pope

Washed (1 M NH4Cl) ribosomes from Pseudomonas bathycetes, Pseudomonas fluorescens, and Escherichia coli were tested for their ability to synthesize protein or polypeptide at high pressure when used as such, when recombined with homologous initiation factors, and when recombined with heterologous initiation factors. The responses of natural messenger ribonucleic acid (MS-2)-directed systems to pressure were independent of the source of initiation factors and paralleled those of the washed ribosomes in polyuridylate-directed systems. In all cases, the responses to pressure were parallel to those obtained when unwashed ribosomes were utilized; therefore, we concluded that the initiation factors were interchangeable among these organisms, and that these factors did not play a critical role in determining the pressure responses of the protein-synthesizing systems. P. bathycetes ribosomal subunits were isolated under a variety of ionic conditions. These were tested for their ability to synthesize protein and polyphenylalanine at a variety of pressures when used in reconstituted P. bathycetes homologous systems and in hybrid systems with ribosomal subunits from E. coli and P. fluorescens. O. bathycetes 30S subunits, isolated in a buffer solution containing 0 mM NaCl and O mM KC] were functional at any pressure; those isolated in the presence of 150 mM NaCl and 0 mM KCl were functional at 1 atmosphere but barosensitive, and those isolated in the presence of O mM NaCl and 150 mM KCl retained the ion-mediated barotolerance characteristic of crude P. bathycetes ribosome preparations. The 50S subunit remained functional regardless of the method of isolation, and it had no effect on pressure sensitivity.

UI MeSH Term Description Entries
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006874 Hydrostatic Pressure The pressure due to the weight of fluid. Hydrostatic Pressures,Pressure, Hydrostatic,Pressures, Hydrostatic
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome

Related Publications

J V Landau, and W P Smith, and D H Pope
January 1969, Nature,
J V Landau, and W P Smith, and D H Pope
October 1968, Nature,
J V Landau, and W P Smith, and D H Pope
January 1984, Doklady Akademii nauk SSSR,
J V Landau, and W P Smith, and D H Pope
July 1968, Nature,
J V Landau, and W P Smith, and D H Pope
October 2001, Molecular cell,
J V Landau, and W P Smith, and D H Pope
March 1986, Science (New York, N.Y.),
J V Landau, and W P Smith, and D H Pope
January 1974, Acta biologica et medica Germanica,
Copied contents to your clipboard!