Regulation of deoxyribonucleotide biosynthesis during in vivo bacteriophage T4 DNA replication. Intrinsic control of synthesis of thymine and 5-hydroxymethylcytosine deoxyribonucleotides at precise ratio found in DNA. 1977

J B Flanegan, and G R Greenberg

The kinetics of the de novo formation of pyrimidine deoxyribonucleotides is the same after infection by wild type bacteriophage T4, which generate very low steady state levels of deoxytibonucleotides, and by T4 DNA synthesis-negative mutatants (Dna-), which accumulate high levels, suggesting that the control is not by a feedback mechanism. In this study, the ratio of the de novo synthesis of dTMP to HmdCMP derivatives was measured by determining the total thymine and 5-hydroxylxytosine (HmCyt) deoxyribonucleotides synthesized by the reductive pathways from [6-3H]uracil including those in DNA and any degradation products excreted into the medium. The ratio of the de novo synthesis of Thy/HmCyt derivatives remained constant at 2.1 +/- 0.1 for at least 45 min after infection by wild type phage, i.e. precisely at the Thy/HmCyt ratio in T4 DNA. On infection by phage mutated in the Dna-genes 32, 41, 44, or 45, the ratio still remained close to 2 to 1 for at least 25 min. Only after the pyrimidine deoxyribonucleotide concentrations reached levels about 100-fold greater than the initial values did the ratio begin to increase. However, a mutant of the structural gene for T4 DNA polymerase showed some increase in ratio by 15 min. Mutants of gene 1 (HmdCMP kinase) were distinct in that the Thy/HmCyt ratio dropped to about 1.0 by 25 min, and then remained quite constant. Uniquely, in these mutants a significant quantity of 5-hydroxymethyluracil or a derivative was found, about 40% being in the medium. The product was shown to be derived by deamination of a 5-HmCyt derivative. All Dna- mutants tested excreted 35 to 50% of their thymine derivatives, mostly as thymine, into the medium. Neither thymine nor 5-hydroxymethyluracil derivates were excreted after wild type phage infection. We propose that pyrimidine deoxyribonucleotide synthesis is regulated at a Thy:HmCyt ratio of 2:1 as an intrinsic property of a complex of enzymes synthesizing and channeling deoxyribonucleotides for T4 DNA replication and not exclusively by effector-sensitive mechanisms.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D003843 Deoxycytidine Monophosphate Deoxycytidine (dihydrogen phosphate). A deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2'-,3'- or 5- positions. DCMP,Deoxycytidylic Acid,Deoxycytidylic Acids,Acid, Deoxycytidylic,Acids, Deoxycytidylic,Monophosphate, Deoxycytidine
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013942 Thymine Nucleotides Phosphate esters of THYMIDINE in N-glycosidic linkage with ribose or deoxyribose, as occurs in nucleic acids. (From Dorland, 28th ed, p1154) Thymidine Phosphates,Nucleotides, Thymine,Phosphates, Thymidine
D014498 Uracil One of four nucleotide bases in the nucleic acid RNA.

Related Publications

J B Flanegan, and G R Greenberg
March 1976, Proceedings of the National Academy of Sciences of the United States of America,
J B Flanegan, and G R Greenberg
April 1980, The Journal of biological chemistry,
J B Flanegan, and G R Greenberg
January 1995, Methods in enzymology,
J B Flanegan, and G R Greenberg
March 1980, The Journal of biological chemistry,
J B Flanegan, and G R Greenberg
January 1986, Acta microbiologica Polonica,
J B Flanegan, and G R Greenberg
May 1983, Photochemistry and photobiology,
J B Flanegan, and G R Greenberg
September 1973, Journal of molecular biology,
J B Flanegan, and G R Greenberg
April 1969, Proceedings of the National Academy of Sciences of the United States of America,
J B Flanegan, and G R Greenberg
March 1994, Journal of bacteriology,
Copied contents to your clipboard!