Principles of odor coding and a neural network for odor discrimination. 1988

D Schild
Physiologisches Institut der Universität Göttingen, Federal Republic of Germany.

A concept of olfactory coding is proposed. It describes the stimulus responses of all receptor cells by the use of vector spaces. The morphological convergence pattern between receptor cells and glomeruli is given in the same vector space as the receptor cell activities. The overall input of a glomerulus follows as the scalar product of the receptor cell activity vector and the vector of the glomerulus' convergence pattern. The proposed coding concept shows how the network of the olfactory bulb succeeds in discriminating odors with high selectivity. It is concluded that sets of mitral cells coding similar odors work very much in the way of mutually inhibited matched filters. This solves one main problem both in olfaction as well as real-time odor detection by an artificial nose, i.e., how the fairly low degree of selectivity of receptor cells or sensors is overcome by the neural network following the receptor stage. The formal description of olfactory coding suggests that quality perception which is invariant under concentration shifts is accomplished by an associative memory in the olfactory bulb.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D008960 Models, Psychological Theoretical representations that simulate psychological processes and/or social processes. These include the use of mathematical equations, computers, and other electronic equipment. Model, Mental,Model, Psychological,Models, Mental,Models, Psychologic,Psychological Models,Mental Model,Mental Models,Model, Psychologic,Psychologic Model,Psychologic Models,Psychological Model
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009666 Nose A part of the upper respiratory tract. It contains the organ of SMELL. The term includes the external nose, the nasal cavity, and the PARANASAL SINUSES. External Nose,External Noses,Nose, External,Noses,Noses, External
D009812 Odorants The volatile portions of chemical substances perceptible by the sense of smell. Odors,Aroma,Fragrance,Scents,Aromas,Fragrances,Odor,Odorant,Scent
D009833 Olfactory Pathways Set of nerve fibers conducting impulses from olfactory receptors to the cerebral cortex. It includes the OLFACTORY NERVE; OLFACTORY BULB; OLFACTORY TRACT; OLFACTORY TUBERCLE; ANTERIOR PERFORATED SUBSTANCE; and OLFACTORY CORTEX. Olfactory Pathway,Pathway, Olfactory,Pathways, Olfactory
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012903 Smell The ability to detect scents or odors, such as the function of OLFACTORY RECEPTOR NEURONS. Olfaction,Sense of Smell,Smell Sense

Related Publications

D Schild
November 2020, Current biology : CB,
D Schild
October 2020, Current biology : CB,
D Schild
June 2020, Proceedings of the National Academy of Sciences of the United States of America,
D Schild
January 2015, eNeuro,
D Schild
October 2011, Current biology : CB,
D Schild
January 1993, Biological cybernetics,
D Schild
January 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D Schild
November 1974, The Journal of the Acoustical Society of America,
Copied contents to your clipboard!