Vanadyl- and vanadate-induced lipid peroxidation in mitochondria and in phosphatidylcholine suspensions. 1988

S Liochev, and E Ivancheva, and E Russanov
Institute of Physiology, Bulgarian Academy of Sciences, Sofia.

Vanadyl (V(IV] was found to induce rapidly developing lipid peroxidation in intact and sonicated mitochondria as well as in phosphatidylcholine suspension. The ability of vanadate (V(V] to induce lipid peroxidation was much less pronounced compared to that of vanadyl. The peroxidative action of vanadate on phosphatidylcholine much increased in the presence of NADH and ascorbate. Preincubation of vanadate with glucose had the same effect. Vanadyl-induced lipid peroxidation was not essentially influenced by SOD, catalase and ethanol but was completely inhibited by butylated hydroxytoluene. All these effects of vanadyl and vanadate are thought to participate in the insulin-like and other biological actions of vanadium.

UI MeSH Term Description Entries
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D014638 Vanadates Oxyvanadium ions in various states of oxidation. They act primarily as ion transport inhibitors due to their inhibition of Na(+)-, K(+)-, and Ca(+)-ATPase transport systems. They also have insulin-like action, positive inotropic action on cardiac ventricular muscle, and other metabolic effects. Decavanadate,Metavanadate,Orthovanadate,Oxyvanadium,Vanadyl,Monovanadate,Sodium Vanadate,Vanadate,Vanadate, Sodium
D015227 Lipid Peroxidation Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor. Lipid Peroxidations,Peroxidation, Lipid,Peroxidations, Lipid
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S Liochev, and E Ivancheva, and E Russanov
March 1984, Research communications in chemical pathology and pharmacology,
S Liochev, and E Ivancheva, and E Russanov
August 1988, Biochemical pharmacology,
S Liochev, and E Ivancheva, and E Russanov
August 1996, The Journal of steroid biochemistry and molecular biology,
S Liochev, and E Ivancheva, and E Russanov
January 1988, Free radical biology & medicine,
S Liochev, and E Ivancheva, and E Russanov
March 1994, Comparative biochemistry and physiology. Pharmacology, toxicology and endocrinology,
S Liochev, and E Ivancheva, and E Russanov
April 1979, Biokhimiia (Moscow, Russia),
S Liochev, and E Ivancheva, and E Russanov
March 1979, Biochimica et biophysica acta,
S Liochev, and E Ivancheva, and E Russanov
September 2013, Indian journal of experimental biology,
S Liochev, and E Ivancheva, and E Russanov
February 1991, Toxicology,
S Liochev, and E Ivancheva, and E Russanov
September 1988, Archives of biochemistry and biophysics,
Copied contents to your clipboard!