Mineral preference in rats treated with muscimol into the lateral parabrachial nucleus. 2020

João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
Department of Basic Sciences, School of Dentistry, Sao Paulo State University (UNESP), Rodovia Marechal Rondom, Km 527, 16018-805, Araçatuba, SP, Brazil. Electronic address: joao.callera@unesp.br.

Injection of muscimol, a GABAA receptor agonist, into the lateral parabrachial nucleus (LPBN) induces 0.3 M NaCl intake in rats. In the present work, we investigated whether such an effect applies to hypertonic (0.3 M) mineral solutions in general or is selective to sodium solutions in a 240 min intake test. Muscimol injection (0.5 nmol/0.2 μL) compared to vehicle injection into the LPBN of adult hydrated rats produced a preferential ingestion of 0.3 M NaCl (25.3 ± 10.2 mL) followed by a 0.3 M NaHCO3 intake (11.7 ± 5.6 mL), with no significant effect on water, KCl and CaCl2 intake. Only the effect of muscimol on NaCl intake (19.0 ± 10.4 mL) persisted in cell-dehydrated rats, with hardly any effect on water or other mineral solutions. The results suggest that the LPBN controls the ingestion of hypertonic NaCl and NaHCO3. They also suggest a selective mechanisms involving the LPBN to check hypertonic sodium intake.

UI MeSH Term Description Entries
D008297 Male Males
D008903 Minerals Native, inorganic or fossilized organic substances having a definite chemical composition and formed by inorganic reactions. They may occur as individual crystals or may be disseminated in some other mineral or rock. (Grant & Hackh's Chemical Dictionary, 5th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Mineral
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D058785 GABA-A Receptor Agonists Endogenous compounds and drugs that bind to and activate GABA-A RECEPTORS. GABA-A Agonists,GABA-A Receptor Agonist,Agonist, GABA-A Receptor,Agonists, GABA-A,Agonists, GABA-A Receptor,GABA A Agonists,GABA A Receptor Agonist,GABA A Receptor Agonists,Receptor Agonist, GABA-A,Receptor Agonists, GABA-A
D018755 GABA Agonists Endogenous compounds and drugs that bind to and activate GAMMA-AMINOBUTYRIC ACID receptors (RECEPTORS, GABA). gamma-Aminobutyric Acid Agonists,GABA Agonist,GABA Receptor Agonist,GABA Receptor Agonists,gamma-Aminobutyric Acid Agonist,Acid Agonist, gamma-Aminobutyric,Acid Agonists, gamma-Aminobutyric,Agonist, GABA,Agonist, GABA Receptor,Agonist, gamma-Aminobutyric Acid,Agonists, GABA,Agonists, GABA Receptor,Agonists, gamma-Aminobutyric Acid,Receptor Agonist, GABA,Receptor Agonists, GABA,gamma Aminobutyric Acid Agonist,gamma Aminobutyric Acid Agonists

Related Publications

João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
November 2015, Physiology & behavior,
João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
July 2011, Brain research,
João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
January 2004, Neuroscience,
João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
January 2000, Brain research bulletin,
João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
June 1994, Hypertension (Dallas, Tex. : 1979),
João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
August 2015, Neuroscience,
João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
April 2006, American journal of physiology. Regulatory, integrative and comparative physiology,
João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
October 2016, Neuroscience research,
João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
October 2013, Pharmacology, biochemistry, and behavior,
João Carlos Callera, and Laurival Antonio De Luca, and José Vanderlei Menani
January 2015, Neuroscience,
Copied contents to your clipboard!