Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic (mdx) mouse. Comparison with Duchenne muscular dystrophy. 1988

M J Cullen, and E Jaros
Muscular Dystrophy Group Research Laboratories, Newcastle General Hospital, Newcastle-upon-Tyne, UK.

Ultrastructurally there are some clear differences in the pathology of muscle in X chromosome-linked muscular dystrophy of the mouse (mdx) and Duchenne muscular dystrophy (DMD). In particular the mouse muscle does not become infiltrated by large aggregations of connective tissue. It has been proposed that the differences are due to secondary biochemical changes consequent on the absence of dystrophin in both conditions. If this is the case, attention should be directed to the earliest ultrastructural changes held in common by both disorders. The most conspicuous of these, preceding myofibril breakdown, is dilation of the sarcoplasmic reticulum. Any physiological link between this and the absence of dystrophin remains to be determined. We suggest that in the mdx mouse, the widespread myofibre necrosis occurring at 3-4 weeks is triggered by increased mechanical demands causing the lack of dystrophin to become critical at this time. Subsequent regeneration of the myofibres appears to be almost completely successful. The ultimate failure of regeneration in DMD, in contrast, may be due to an additional factors acting in DMD exacerbating the lack of dystrophin. This additional factor may be associated with the plasma membrane lesions (not seen in mdx). Alternatively there may be factors present in the mouse that compensate for the lack of dystrophin. It is pointed out that to understand better the different processes occurring in mdx and DMD we need to learn more about the factors which control the balance between the growth of muscle and the growth of connective tissue in both normal and pathological human and mouse muscle.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009137 Muscular Dystrophy, Animal MUSCULAR DYSTROPHY that occurs in VERTEBRATE animals. Animal Muscular Dystrophies,Animal Muscular Dystrophy,Dystrophies, Animal Muscular,Dystrophy, Animal Muscular,Muscular Dystrophies, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014960 X Chromosome The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species. Chromosome, X,Chromosomes, X,X Chromosomes
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M J Cullen, and E Jaros
January 1986, Acta neuropathologica,
M J Cullen, and E Jaros
February 1984, Proceedings of the National Academy of Sciences of the United States of America,
M J Cullen, and E Jaros
September 2011, The Journal of pharmacology and experimental therapeutics,
M J Cullen, and E Jaros
May 1982, Lancet (London, England),
Copied contents to your clipboard!