Effect of dietary vitamin E level on the biochemical response of rat lung to ozone inhalation. 1988

N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
Department of Medicine, University of California, Los Angeles.

We examined the effects of dietary vitamin E level on rat lung response to ozone (O3) inhalation. In one study, we fed 1-month-old Sprague-Dawley (SD) rats a test diet containing 0 or 50 IU vitamin E/kg for 2 months, and then exposed one-half of the animals from each dietary group to 0.8 ppm (1,568 micrograms/m3) O3 intermittently (8 hours daily) and the other half to room air for 7 days. After O3 exposure, we found significant increases in marker enzyme activities in rat lungs from both dietary groups relative to corresponding air-exposed controls, but the magnitude of increases was greater for the 0 IU than the 50 IU group. In another study, we fed 1-month-old SD rats a test diet containing 10, 50, or 500 IU vitamin E/kg for 2 months and then exposed one-half of the animals from each dietary group to 0.8 ppm (1,568 micrograms/m3) O3 continuously and the other half to room air for 4 days. The O3 exposure increased the metabolic activities in rat lungs from all three dietary groups relative to corresponding air-exposed controls, but the magnitude of increases was greater for the 10 IU than the 50 IU or 500 IU group, and the difference between the 50 IU and 500 IU groups was small. Because a greater increase in lung metabolism after O3 exposure is thought to be associated with a greater tissue injury, the results suggest that an absence of dietary vitamin E exacerbates lung injury from O3 inhalation, while its presence protects from injury. However, the magnitude of this protective effect does not increase proportionately with increased dietary vitamin E supplementation beyond a certain level.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010126 Ozone The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE). Ground Level Ozone,Low Level Ozone,Tropospheric Ozone,Level Ozone, Ground,Level Ozone, Low,Ozone, Ground Level,Ozone, Low Level,Ozone, Tropospheric
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
December 1982, Toxicology and applied pharmacology,
N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
November 1979, Journal of toxicology and environmental health,
N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
June 1984, Biological trace element research,
N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
December 1983, Toxicology and applied pharmacology,
N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
November 1985, Toxicology and industrial health,
N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
March 1985, Bulletin of environmental contamination and toxicology,
N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
August 1986, Environmental research,
N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
January 1977, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition,
N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
October 1984, Nihon eiseigaku zasshi. Japanese journal of hygiene,
N M Elsayed, and R Kass, and M G Mustafa, and A D Hacker, and J J Ospital, and C K Chow, and C E Cross
July 1984, Aviation, space, and environmental medicine,
Copied contents to your clipboard!