Changes of orofacial somatosensory attenuation during speech production. 2020

Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
Grenoble Alpes University, CNRS, Grenoble INP, GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 Saint Martin D'heres Cedex France; Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA. Electronic address: takayuki.ito@gipsa-lab.grenoble-inp.fr.

Modulation of auditory activity occurs before and during voluntary speech movement. However, it is unknown whether orofacial somatosensory input is modulated in the same manner. The current study examined whether or not the somatosensory event-related potentials (ERPs) in response to facial skin stretch are changed during speech and nonspeech production tasks. Specifically, we compared ERP changes to somatosensory stimulation for different orofacial postures and speech utterances. Participants produced three different vowel sounds (voicing) or non-speech oral tasks in which participants maintained a similar posture without voicing. ERP's were recorded from 64 scalp sites in response to the somatosensory stimulation under six task conditions (three vowels × voicing/posture) and compared to a resting baseline condition. The first negative peak for the vowel /u/ was reliably reduced from the baseline in both the voicing and posturing tasks, but the other conditions did not differ. The second positive peak was reduced for all voicing tasks compared to the posturing tasks. The results suggest that the sensitivity of somatosensory ERP to facial skin deformation is modulated by the task and that somatosensory processing during speaking may be modulated differently relative to phonetic identity.

UI MeSH Term Description Entries
D010700 Phonetics The science or study of speech sounds and their production, transmission, and reception, and their analysis, classification, and transcription. (Random House Unabridged Dictionary, 2d ed) Speech Sounds,Sound, Speech,Sounds, Speech,Speech Sound
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013060 Speech Communication through a system of conventional vocal symbols. Public Speaking,Speaking, Public
D013067 Speech Perception The process whereby an utterance is decoded into a representation in terms of linguistic units (sequences of phonetic segments which combine to form lexical and grammatical morphemes). Speech Discrimination,Discrimination, Speech,Perception, Speech
D014831 Voice The sounds produced by humans by the passage of air through the LARYNX and over the VOCAL CORDS, and then modified by the resonance organs, the NASOPHARYNX, and the MOUTH. Voices

Related Publications

Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
March 2024, Journal of speech, language, and hearing research : JSLHR,
Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
August 2020, Journal of speech, language, and hearing research : JSLHR,
Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
January 2023, Auditory perception & cognition,
Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
June 2003, Nature,
Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
October 2006, Current biology : CB,
Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
December 2013, Journal of speech, language, and hearing research : JSLHR,
Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
April 1990, Brain research,
Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
January 2022, Frontiers in psychology,
Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
December 2003, Journal of speech, language, and hearing research : JSLHR,
Takayuki Ito, and Hiroki Ohashi, and Vincent L Gracco
June 1988, Journal of speech and hearing research,
Copied contents to your clipboard!